Обсуждение участницы:Анна

Материал из Викиконспекты
Перейти к: навигация, поиск

[math] O \mid p_{i,j} = 1, d_i \mid - [/math]

Задача:
Дано [math]m[/math] одинаковых станков, которые работают параллельно, и [math]n[/math] работ, которые необходимо выполнить в произвольном порядке на всех станках. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть время окончания [math]d_i[/math] — время, до которого она должна быть выполнена. Необходимо проверить, существует ли расписание, при котором все работы будут выполнены вовремя.

Описание алгоритма

Идея

Заметим, что если [math]d_i \lt m[/math], то очевидно, что [math]C_i \gt d_i[/math], следовательно, расписания не существует. Поэтому будем полагать, что [math]m \leqslant d_i[/math] для [math]i = 1 \ldots n[/math].

Определим [math]T = \max\limits_{i \in [1, n]}d_i[/math] — количество временных интервалов [math][t - 1, t][/math], где [math]t = 1 \ldots T[/math]. Будем обозначать [math][t - 1, t][/math] как [math]t[/math]. Для каждого из них мы можем назначить не более [math]m[/math] работ (по одной на каждый станок). Для каждой работы [math]i[/math] будем назначать времена обработки на каждой из машин следующим образом: на машине [math]m[/math] работа займет временной интервал [math]d_i[/math], на машине [math](m - 1)[/math] — интервал [math](d_i - 1)[/math] и так далее, на машине [math]1[/math] работа займет временной интервал [math]d_i - m + 1[/math]. В случае коллизий, то есть если найдется временной интервал [math]k \gt 1[/math], содержащий [math]m + 1[/math] работу, возьмем минимальный такой [math]k[/math] и перенесем лишнюю работу из него на ту же машину, но на один временной интервал левее. Будем повторять этот процесс, пока необходимо (и пока [math]k \gt 1[/math]). Таким образом, только первый временной интервал может содержать более [math]m[/math] работ. Причем это может произойти тогда и только тогда, когда задача не имеет решения, то есть не существует расписания, при котором все работы будут выполнены вовремя.

Псевдокод

Определим [math]h(t)[/math] — количество работ во временном интервале [math]t[/math].

void checkExistenceOfSchedule(int* [math]d[/math]):
  [math]T = \max\{d_i \mid i = 1 \ldots n\}[/math]
  for [math]t = 1[/math] to [math]T[/math]
     [math]h(t) = 0[/math]
  for [math]i = 1[/math] to [math]n[/math]
     for [math]j = d_i[/math] to [math]d_i - m + 1[/math]           (1)
        [math]h(j) = h(j) + 1[/math]
     while [math]\exists k \gt  1[/math] and [math]h(k) = m + 1[/math]     (2)
        find [math]\min\{k_0 \mid h(k_0) = m + 1\}[/math]
        [math]h(k_0 - 1) = h(k_0 - 1) + 1[/math]
        [math]h(k_0) = m[/math]
  if [math]h(1) \leqslant m[/math]
     return true
  else
     return false

Замечание: если расписание существует, то оно может быть вычислено данным алгоритмом, если добавить в цикл (1) функцию, отвечающую за добавление работы [math]i[/math] на момент [math]j[/math] в расписании для соответствующей машины и в цикл (2) функцию, отвечающую за перемещение работы, которой нет во временном интервале [math]k_0 - 1[/math], но которая есть в [math]k_0[/math], на момент [math]k_0 - 1[/math] в той же машине (этот шаг будет обоснован далее в доказательстве корректности).

Асимптотика

Покажем, что данный алгоритм может быть реализован за время [math]O(nm)[/math].
Для начала рассмотрим следующий вопрос: пусть [math]U[/math] — множество работ, для которого существует расписание, в котором отсутствуют опаздывающие работы, пусть [math]i[/math] — работа, не принадлежащая [math]U[/math], для которой выполняется неравенство [math]d_i \leqslant d_j[/math]для любой [math]j \in U[/math]. Можно ли построить расписание для множества [math]V = U \cup \{i\}[/math], в котором так же будут отсутствовать опаздывающие работы.
Введем несколько обозначений. Вектора [math]h[/math], соответствующие множествам [math]U[/math] и [math]V[/math] обозначим как [math]h^U[/math] и [math]h^V[/math] соответственно. [math]x(d_i)[/math] — количество временных интервалов [math]t[/math] со свойствами

  • [math]d_i - m + 1 \leqslant t \leqslant d_i[/math],
  • [math]h^U(t) \lt m[/math].

Будем говорить, что работы могут быть выполнены вовремя, если для них существует расписание, в котором эти работы успевают выполниться без опозданий.

Лемма:
Пусть даны работы [math]1, 2 \ldots i[/math] с дедлайнами [math]d_1 \leqslant d_2 \leqslant \ldots \leqslant d_i[/math], [math]U = \{1, 2, \ldots i - 1\}[/math] и [math]V = U \cup \{i\}[/math]. Тогда для всех работ [math]j = d_i - m + 1 \ldots d_i[/math], для которых [math]h^U(j) \lt m[/math], будет верно, что [math]h^V(j) = h^U(j) + 1[/math].
Доказательство:
[math]\triangleright[/math]
Рассмотрим вектора [math]h^U[/math] и [math]h^V[/math] после [math]i - 1[/math] и [math]i[/math] итераций алгоритма. Заметим, что значения вектора [math]h[/math], не превосходящие [math]m[/math], то есть [math]h(j) \lt m[/math], никогда не уменьшаются. Следовательно, если [math]d_i - m + 1 \leqslant j \leqslant d_i[/math] и [math]h^U(j) \lt m[/math], то [math]h^V(j) \geqslant h^U(j) + 1[/math]. Чтобы показать, что ситуация, когда при тех же условиях [math]h^V(j) \geqslant h^U(j) + 2[/math], невозможна, рассмотрим расписание, построенное алгоритмом.
[math]\triangleleft[/math]

Доказательство корректности

Теорема:
Для множества работ с дедлайнами [math]d_1, d_2, \ldots d_n[/math] задача имеет решение тогда и только тогда, когда [math]h(1) \leqslant m[/math].
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math]
Если задача имеет решение, то очевидно, что первый временной интервал не может быть переполнен.
[math]\Leftarrow[/math]

Изначально алгоритм присваивает все стадии обработки каждой работы [math]i[/math] (то есть обработку на каждом станке) попарно различным временным интервалам. Если [math]\exists k \gt 1 : h(k) = m + 1[/math] и [math]h(k - 1) \leqslant m[/math], то это значит, что существует как минимум одна работа, которая назначена временному интервалу [math]k[/math], но которой нет во временном интервале [math]k - 1[/math]. Следовательно, после перемещения вектор [math]h[/math] по-прежнему будет удовлетворять условию, что каждая работа принадлежит [math]m[/math] разным временным интервалам, причем в каждом из них она будет выполняться на разных машинах, так как при перемещении работ машины остаются прежними. Таким образом, если [math]h(1) \leqslant m[/math], то [math]h(t) \leqslant m[/math], где [math]t = 1 \ldots T[/math], то есть существует решение, при котором все работы будут выполнены вовремя.
[math]\triangleleft[/math]