Техника частичного каскадирования
Определение: |
Каталог (англ. catalog)— упорядоченный массив из элементов, на которых введено отношение порядка. В данной статье предполагается, что массив упорядочен по неубыванию. |
Определение: |
Техника частичного каскадирования (англ. fractional cascading technique) — это способ организации структуры данных, который предназначен для быстрого итеративного поиска в | каталогах.
Задача: |
Дано | каталогов , каталог имеет размер . Поступают запросы, которые представляют собой один элемент . Требуется для каждого запроса определить в каждом каталоге максимальный элемент меньше либо равный .
Содержание
Различные подходы к решению
Пусть
1) Для ответа на запрос последовательно посетим все каталоги. Пусть мы находимся в -ом каталоге, тогда мы можем ответить на запрос для данного каталога за , используя бинарный поиск. Так как каталогов штук, то для ответа на запрос понадобится времени. Для хранения всех каталогов понадобится памяти.
2) Для второго способа построим сбалансированное бинарное дерево поиска из всех элементов всех каталогов. В каждой вершине дерева будет хранится дополнительно кортеж из элементов — максимальных представителей каталогов меньше либо равных ключу вершины. Таким образом такая структура будет занимать на дерево поиска и на дополнительные кортежи.Тогда для ответа на запрос найдем в дереве поиска максимальный ключ меньше либо равный и выведем элементов соответствующего кортежа, итого ответ на запрос производится за .
Итого имеем:
Тип подхода к решению | Необходимая память | Время ответа на один запрос |
---|---|---|
|
|
|
|
|
|
Решение с помощью техники частичного каскадирования
Как будет показано далее, эта техника берет лучшее от подходов к решению этой задачи, что были рассмотрены выше, а именно она требует
Идея данной техники построена на следующем:
- 1) Мы можем проводить ссылки из каталога номер
- 2) Мы можем для оптимизации пункта 1 создать модифицированные каталоги , где -ый каталог будет представлять каталог слитый с
Построение
Введем определения:
Определение: |
Подставной элемент — элемент каталога | , который пришел из каталога . А также каталоги будем называть модифицированными каталогами.
Первый этап построения:
- : Данный каталог не имеет никаких ссылок и равен .
- : Для построения данного каталога будем сливать каталог с каждым вторым элементом каталога . Каждый элемент из каталога оснастим ссылкой на позицию, откуда мы его взяли, такие ссылки будет называть ссылками вниз.
Второй этап построения:
- В каждом модифицированном каталоге для каждого элемента заведем две ссылки. Для неподставных элементов это будут ссылки на максимальныйподставной элемент меньше текущего и на минимальный любого типа больше текущего. Если элемент подставной, то ссылки будут на минимальный неподставной элемент" больше текущего и на максимальный неподставной элемент меньше текущего. Назовем их ссылками влево и вправо.
Рассмотрим на процесс построения на примере.
Пусть дано каталогов:
Для наглядности заведем таблицу, где в -ой строке -ая ячейка будет окрашена в зеленый цвет, если она присутствует в каталоге . Тогда результатом построения будет таблица, которая представлена на рисунке.
Из-за необходимости хранения ссылок будет удобно завести структуру для хранения элементов в модифицированных каталогах:
struct node : element key node left, right, down bool is_alien
Псевдокод построения модифицированных каталогов:
M[k] = C[k] for i = k - 1 to 1 pointer_in_C = 1 // указатель на самый левый элемент каталога C[i], который еще не рассмотрели pointer_in_next_M = 1 // указатель на самый левый элемент каталога M[i + 1], который еще не рассмотрели pointer_in_M = 1 // указатель на самый левый элемент каталога M[i], в который будем добавлять элемент node last_non_alien = NULL // указатель на последний неподставной элемент для текущей позиции node last_alien = NULL // указатель на последний подставной элемент для текущей позиции while(true) if (pointer_in_next_M > M[i + 1].size && pointer_in_C > C[i].size) break if (pointer_in_next_M > M[i + 1].size || M[i + 1][pointer_in_next_M] >= C[i][pointer_in_C]) M[i][pointer_in_M].key = C[i][pointer_in_C].key M[i][pointer_in_M].left= last_alien last_non_alien = M[i][pointer_in_M] pointer_in_C++ else M[i][pointer_in_M].key = M[i + 1][pointer_in_next_M].key M[i][pointer_in_M].down = M[i + 1][pointer_in_next_M] M[i][pointer_in_M].is_alien = true M[i][pointer_in_M].left = last_non_alien lst_alien = M[i][pointer_in_M] pointer_in_next_M += 2 pointer_in_M++ last_non_alien = (!M[i][M[i].size].is_alien ? M[i][M[i].size] : NULL) // теперь это указатель на первый справа неподставной элемент для текущей позиции for j = M[i].size - 1 to 1 if (M[i][j].is_alien) M[i][j].right = last_non_alien else M[i][j].right = M[i][j + 1] last_non_alien = M[i][j]
Из построения понятно, что мы тратим
на построение последнего каталога, на построение предпоследнего и т.д. Пусть . Тогда получаем оценку памяти. По алгоритму понятно, что такая же оценка верна и для времени на предподсчет.Ответ на запрос
- В первом каталоге ответ на запрос найдем с помощью бинарного поиска по . Пусть ответом для этого каталога будет ячейка , тогда если cell — подставная вершина, то перейдем по ссылке влево.
- Проитерируемся по оставшимся каталогам.
- Для того, чтобы перейти в новый модифицированный каталог мы перейдем из по ссылке влево, чтобы попасть в подставную вершину, а потом из нее перейдем по ссылке вниз, чтобы попасть в следующий каталог.
- Если теперь — неподставная вершина, то нам достаточно рассмотреть двух ее соседей справа в , так как , а каждая вторая ячейка из попадает в , т.е. мы бы встретили ее ранее и перешли мы вниз по ней, но этого не случилось.
- Обновив cell максимальным из подходящих значений нужно проверить, является ли она подставным элементом, если да, то перейдем по ссылке влево, попав в ответ для текущего каталога, иначе это и будет ответ.
node cell = binary_search(M[1], x) if (cell.is_alien) cell = cell.left ans[1] = cell.key; for i = 2 to k cell = cell.left.down if (cell.right <= x) // Попытка сдвинуться к большему элементу cell = cell.right if (cell.right <= x) // Попытка сдвинуться к большему элементу cell = cell.right // Замечание: по построению, если мы стоим в неподставном элементе, то при сдвиге вправо мы можем оказаться в элементе любого типа if (cell.is_alien) // Для этого есть проверка cell = cell.left ans[i] = cell.key
Как можно видеть, для того, чтобы найти ответ для первого каталога необходимо сделать один бинарный поиск, что требует
времени, после чего необходимо времени, чтобы ответить на запрос для всех остальных каталогов. Суммарное время работы .Дополнительно
Данная техника может использоваться для ускорения некоторых алгоритмов, где требуется ответить на запрос на отрезке [L, R], где тут.
. Однако иногда наблюдается замедление, о чем можно почитатьСм. также
Пересечение прямоугольника с множеством непересекающихся отрезков (segment tree)