Симуляция одним распределением другого
Содержание
Распределение
Определение: |
Распределение вероятностей — закон, описывающий область значений случайной величины и вероятность их исхода. |
Законом распределения дискретной случайной величины
называется таблица:где
— всевозможные значения величины а — их вероятности, то естьПри этом должно выполняться равенство:
Примеры распределений
- Биномиальное распределение
- Нормальное распределение
- Равномерное распределение
Симуляция распределений
Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты". Например, для создания схемы с двумя исходами $A_1$ и $A_2$: $P(A_1)=\dfrac{3}{4}$ $,$ $P(A_2)=\dfrac{1}{4}$ можно из датчика случайных двоичных величин получить два результата "честной монеты" $\delta_1$ и $\delta_2$ и, например, при $\delta_1 = \delta_2 = 1$ выработать исход $A_2$, а в остальных случаях $A_1$. Аналогично для схемы с четырьмя исходами $P(A_1)=\dfrac{3}{16}$ $,$ $P(A_2)=\dfrac{1}{16}$ $,$ $P(A_3)=\dfrac{8}{16}$ $,$ $P(A_4)=\dfrac{4}{16}$ можно получить четыре результата "честной монеты" $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$. Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий.
- Можно приблизить вероятности двоичными дробями (с любой точностью), далее работать с полученными приближёнными значениями
- Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ результатами "честной монеты", в которой $r$ наборов используются для выработки случайного исхода, а остальные $2^{k}-r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная $r2^{-k}$, тем схема будет эффективнее.
Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$ это случайная величина. Её математическое ожидание: $E\lambda = \dfrac{1}{2}\cdot1+\dfrac{1}{4}\cdot2+\dfrac{1}{8}\cdot3+\dfrac{1}{16}\cdot3+\dfrac{1}{16}\cdot4 = 1\dfrac{7}{8}$ Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \leqslant s_i$. Найденное значение индекса $i$ и определяет исход $A_i$.
Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам.
Общий случай
Допустим у нас есть распределение
Нам нужно получить распределение .Для начала рассмотрим случай, когда все
а в распределении количество элементарных исходов равно Проводим эксперимент: если попадаем в область пересекающуюся с и то увеличиваем ее и повторяем эксперимент. На рисунке слева красным обозначенно распределение Вероятность того, что на этом шаге эксперимент не закончится — Математическое ожидание количества экспериментов — приТеперь рассмотрим случай, когда все элементарные исходы
по-прежнему равновероятны а количество элементарных исходов распределения равно Повторим эксперимент раз.
Отрезок разбился на
отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов
Берем
, и пусть оно максимальной длины. Проводим экспериментов. все остальные еще меньше. Суммарная длина отрезков не больше Нужно
Таким образом, из любого исходного распределения можно получить нужное нам распределение.
См. также
Литература
- Боровков А.А. Математическая статистика: оценка параметров, проверка гипотез. — М., Физматлит, 1984, — стр. 71.
- Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн — Алгоритмы. Построение и анализ — М. : ООО "И. Д. Вильямс", 2013. — 1328 с. — стр. 1254.
- Романовский И. В. — Элементы теории вероятностей и математической статистики (теория и задачи): учебное пособие. — Омск, издатель ИП Скорнякова Е.В., 2012. — 189 с. — стр. 34.