Мера, порождённая внешней мерой
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Пусть есть множество | и внешняя мера на нем, и множества являются подмножествами . Множество хорошо разбивает множество , если .
Так как , то, по полуаддитивности внешней меры, всегда, поэтому, когда мы будем проверять, что одно множество хорошо разбивает другое, достаточно проверять неравенство . Оно всегда верно, если , поэтому далее будем проверять его только для случая .
Определение: |
Множество | называется μ*-измеримым, если оно хорошо разбивает всякое множество .
Выделим в класс -измеримых множеств .
Теорема: |
1) — -алгебра множеств.2) — мера на . |
Доказательство: |
Доказательство разбиваем на 2 этапа. На первом этапе мы докажем, что - алгебра, а конечно-аддитивна на этой алгебре. На втором этапе — что — -алгебра, а является -аддитивной на ней.1. Сначала проверим аксиомы алгебры:
Пусть и , проверим, что конечно-аддитивна.. Мы сделали проверку для двух множеств, дальше можно доказать требуемое для любого конечного числа множеств по индукции. 2. Из первого пункта мы уже знаем, что, , если дизъюнктны, то .Пусть . Полагая , для доказательства того, что является -алгеброй, нам нужно установить неравенство: ., поэтому . . При , получаем .Но , поэтому , и . Требуемое неравенство доказано, .Подставим в Дальше еще две строчки, но, вроде бы, они не нужны. вместо , получим . Но по -аддитивности внешней меры, , поэтому , и - -аддитивная мера на . |