Регуляризация

Материал из Викиконспекты
Версия от 04:05, 19 января 2020; AnnaRodionova (обсуждение | вклад) (Основные виды регуляризации)
Перейти к: навигация, поиск
Определение:
Регуляризация (англ. regularization) в статистике, машинном обучении, теории обратных задач — метод добавления некоторых дополнительных ограничений к условию с целью решить неккоректно поставленную задачу или предотвратить переобучение. Чаще всего эта информация имеет вид штрафа за сложность модели.


Мотивация

Как говорилось ранее, регуляризация полезна для борьбы с переобучением. Если вы выбрали сложную модель, и при этом у вас недостаточно данных, то легко можно получить итоговую модель, которая хорошо описывает обучающую выборку, но не обобщается на тестовую.

На примере линейной регрессии

В качестве наглядного примера можно рассмотреть линейные регрессионные модели. Восстановить зависимость для нескольких точек можно пытаться полиномами разной степени M.

Рис 1. Норма. M=2
Рис 2. Переобучение. M=4

Как можно видеть на Рис 1. представлена зависимость, которая хорошо подходит для описания данных, а на Рис. 2 - модель слишком сильно заточилась под обучающую выборку.

Одним из способов бороться с этим эффектом - использовать регуляризацию, т. е. добавлять некоторый штраф за большие значения коэффициентов у модели. Тем самым мы запретим слишком "резкие" изгибы и ограничим возможность подстраивания модели под данные.

На примере логистической регрессии

Необходимость регуляризации можно увидеть и на другом примере. Представьте, что ваша обучающая выборка была линейно разделима. В таком случае в процессе оптимизации значения весов уйдут в бесконечность и вместо сигмойды получится "ступенька", как представлено на Рис. 3.

Рис 3. Сигмойда - "ступенька"

Это плохо, ибо мы переобучились на нашу обучающую выборку. Как и в предыдущем примере, побороться с этим можно путем добавлением регуляризации, не дающей весам принимать слишком большие значения.

Основные виды регуляризации

Переобучение в большинстве случаев проявляется в том, что в получающихся многочленах слишком большие коэффициенты. Соответственно, необходимо добавить в целевую функцию штраф за слишком большие коэффициенты.

L1-регуляризация

L2-регуляризация

Эластичная сеть

Вероятностная интерпретация регуляризации

Регуляризация в линейной регрессии

Другие использования регуляризации

Логистическая регрессия

Нейронные сети

Метод опорных вектоов

Стохастический градиентный спуск