Блендинг изображений

Материал из Викиконспекты
Версия от 17:01, 4 января 2021; Wafemand (обсуждение | вклад) (Добавлен раздел Трансфер стиля)
Перейти к: навигация, поиск
Определение:
Гармонизация изображений (англ. image harmonization) — метод, позволяющий наложить часть одного изображения поверх другого таким образом, чтобы композиция изображений выглядела естественно, без швов на границах вставки и с соответсвующими цветами и текстурами [1].
  • картинка (можно вставить картинку с дайвером, если сможем её обработать гармонизатором)*


Определение:
Блендинг изображений (англ. image blending) — метод, позволяющий вставить часть одного изображения в другое таким образом, чтобы композиция изображений выглядела естественно, без швов на границах вставки и соответсвующими цветами и текстурами. В отличие от гармонизации, блендинг сам определяет какие пиксели фонового изображения нужно заменить.[1]
  • картинка с дайвером (там видно, что пузырики с фонового изображения остались поверх дайвера)*


Блендинг Пуассона

todo Note: Блендинг Пуассона на самом деле является гармонизацией, так как требует маску заменяемых пикселей. Почему-то в статьях его называют блендингом (Poisson blending), хотя оригинальная статья называлась Poisson Image Editing[2]

Простая вставка одного изображения поверх другого нередко влечет заметный перепад яркости на границе вставки. Метод Пуассона заключается в сглаживании этого перепада с целью сделать дефект менее заметным, используя градиент вставляемого изображения и значения пикселей фонового изображения на границе вставки.

todo Note: Для RGB изображений задача минимизации решается для каждого цветового канала отдельно.

Давайте обозначим за $A$ изображение, которое служит фоном, а за $B$ — изображение, вставляемое поверх $A$.

Пусть $p$ — координаты пикселя двухмерного изображения (т.е. $(x, y)$). $A_p$ — значения пикселя фонового изображение, $B_p$ — значение пикселя вставляемого изображения. Пусть $\Omega$ — множество координат $p$, на которых определено вставляемое изображение $B$. $\partial \Omega$ — координаты границы вставляемой области.

Пусть $N_p$ — множество соседей $p$ (максимум четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$). Для всех пар $<p, q>$ таких, что $q \in N_p$, введем $v_{pq} = B_p - B_q$

Обозначим результат блендинга за $O$. Для того чтобы найти значение пикселей в месте наложения $B$, решаем задачу минимизации:

$\underset{f_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; (O_p - O_q - v_{pq})^2$, где $O_p = A_p$ для $p \in \partial \Omega$

Заметим, что функция, которую мы хотим минимизировать, квадратична относительно переменных $O_p, p \in \Omega$. Для решения задачи минимизации вычислим частные производные по этим переменным и найдем значения переменных, при которых частные производные будут равны нулю.

Для $p \in \Omega$: $\frac{\partial{\underset{p, q \in \Omega}{\sum}\; (O_p - O_q - v_{pq})^2}}{\partial O_p} = \underset{q \in N_p}{\sum} 2 (O_p - O_q - v_{pq}) - \underset{q \in N_p}{\sum} 2 (O_q - O_p - v_{qp}) = 2 \underset{q \in N_p}{\sum} 2 (O_p - O_q - v_{pq})$.

Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$.

Для точек, граничащих с $\partial \Omega$: $|N_p| O_p - \underset{q \in N_p \cap \Omega}{\sum} O_q = \underset{q \in N_p \cap \partial \Omega}{\sum} A_q + \underset{q \in N_p}{\sum} v_{pq}$.

Решаем систему уравнений и получаем значения $O_p$ для $p \in \Omega$.

todo: Поскольку система уравнений sparse symmetric positive-defined, можно использовать следующие итеративные алгоритмы: Gauss-Seidel, V-cycle multigrid.

Заметим, что метод Пуассона сдвигает цвета накладываемого изображения и сохраняет свойства градиента (прям всегда? нужно подумоть), туду


Poisson blending для самых маленьких

https://erkaman.github.io/posts/poisson_blending.html

Another thing that we wish to remark is that even though poisson blending shifts the color of the source image, it still preserves the features of it. In the original source image, f4 is smaller than f3, f5 is greater than f4, and so on, and this also applies to our recovered image. This information was encoded by the gradients of the source image. However, it is also important to realize that poisson blending does not exactly preserve the gradients. In the recovered image, the gradient f3,4 assumes the value 7−4=3, but it was 26−22=4 in the original source image. In the previous section, the gradients of the recovered image were identical to the gradients of the original image. But with poisson blending, the gradients of a completely different image are pasted into another image, and the result of this is that the solver is not always able to recover an image whose gradients exactly match the specified gradients. But the solver tries to find an image whose gradients match as close as possible, and in practice, poisson blending yields good results, which we shall show examples of in the following section.

Трансфер стиля

Прежде чем переходить к гармонизации картин, рассмотрим задачу трансфера стиля с изображения $S$ на изображение $I$. Для этого используются выходы скрытых слоёв свёрточной нейронной сети VGG-19[3].

Основная идея генерации изображения — решение оптимизационной задачи $\mathcal{L}(O, I, S) \longrightarrow min$, где $O$ — итоговое изображение, $\mathcal{L}(O, I, S)$ — функция потерь. Такую задачу можно решать градиентным спуском в пространстве изображений используя метод обратного распространения ошибки.


Определение:
Пусть $F^l\left[I\right] \in \mathcal{R}^{N_l \times M_l}$ — выход $l$-го слоя сети на изображении $I$. Представим его как матрицу $N_l \times M_l$,

где $N_l$ — количество фильтров в $l$-ом слое,

$M_l$ — количество признаков (высота, умноженная на ширину). Тогда $F^l_{ij}\left[I\right]$ — $j$-ый признак $i$-го фильтра в $l$-ом слое.


Определение:
Матрица Грама (англ. Gram matrix) — матрица попарных скалярных произведений. В нашем случае матрица отражает корреляцию между выходами фильтров. $G^l\left[I\right] \in \mathcal{R}^{N_l \times N_l} = F^l\left[I\right]F^l\left[I\right]^T$.


Рассмотрим метод, предложенный в статье Image Style Transfer Using Convolutional Neural Networks[4].

Функции потерь

Определение:
$\mathcal{L}_{content}(I, O, l)$ — функция потерь содержания на слое $l$. $\mathcal{L}_{content} = \displaystyle\sum_{i, j} (F^l_{ij}\left[I\right] - F^l_{ij}\left[O\right])^2$.


Определение:
$\mathcal{L}_{style}(I, O)$ — функция потерь стиля. $\mathcal{L}_{content} = \displaystyle\sum_l \frac{w_l}{4N_l^2M_l^2} \displaystyle\sum_{i, j} (G^l_{ij}\left[I\right] - G^l_{ij}\left[O\right])^2$, где w_l — вклад $l$-го слоя в функцию потерь.


Итоговой функцией потерь будет $\mathcal{L}_{Gatys} = \alpha\mathcal{L}_{content}(I, O, L) + \beta\mathcal{L}_{style}(I, O)$. Веса \alpha и \beta, последовательность $w_l$ и слой $L$ являются, в некотором смысле, гиперпараметрами алгоритма, которые нужно подбирать[4].

  • TODO: GEB16 Figure 3 (влияние $w_l$)
  • TODO: GEB16 Figure 4 (влияние $\alpha$)
  • TODO: GEB16 Figure 5 (влияние $L$)

Начальная инициализация градиентного спуска

Авторы статьи показывают, что в качестве начальной инициализации можно брать изображение $I$, изображение $S$ или белый шум — алгоритм даёт похожие результаты в этих случаях[4].

  • TODO: GEB16 Figure 6

Глубокая гармонизация картин

Для того чтобы вставить изображение в картину или рисунок нужно не только сделать бесшовный переход и изменить цвета, но ещё и изменить текстуру вставляемого изображения, например сымитировать мазки кистью.


 fun Harmonization(
   I,   // Входное изображение 
   M,   // Маска 
   S    // Стилевое изображение 
 ):
     // Тут будет комментарий 
   I' := SinglePassHarmonization(I, M, S, IndependentMapping)
     // Тут тоже 
   O  := SinglePassHarmonization(I', M, S, ConsistentMapping)
   return O
 fun SinglePassHarmonization(
   I,   // Входное изображение 
   M,   // Маска 
   S,   // Стилевое изображение 
   $\pi$   // Neural mapping function todo: translate this shit 
 ):
   F_I := ComputeNeuralActivations(I)
   F_S := ComputeNeuralActivations(S)
   P := $\pi$(F_I, M, F_S)
   O := Reconstruct(I, M, S, P)

   return O

Глубокий блендинг

Ссылки

Матрица Грама (англ.)

Примечания

  1. 1,0 1,1 Deep Image Blending Lingzhi Zhang, Tarmily Wen, Jianbo Shi (2020)
  2. Poisson Image Editing Patrick Perez, Michel Gangnet, Andrew Blake (2003)
  3. Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan, Andrew Zisserman (2014)
  4. 4,0 4,1 4,2 Image Style Transfer Using Convolutional Neural Networks Leon A. Gatys, Alexander S. Ecker, Matthias Bethge (2016)