Участник:Quarter
Версия от 23:12, 16 июня 2021; Quarter (обсуждение | вклад) (→Распределение максимальной степени вершин)
Распределение степеней вершин
| Определение: |
| Распределение степеней вершин случайного графа - это функция , определённая на как , то есть выражающая вероятность того, что вершина в графе имеет степень . Другими словами, распределение степеней графа определяется как доля узлов, имеющих степень . |
| Пример: |
| Если есть в общей сложности узлов в графе и из них имеют степень , то . Другими словами, равно вероятности того, что отдельно взятая вершина имеет степень . |
| Утверждение: |
Пусть случайный граф . Тогда он имеет биномиальное распределение степеней вершин :
|
| Действительно, если вероятность появления ребра , то вероятность появления ровно рёбер у вершины равна (схема Бернулли). Таких наборов рёбер у одной вершины всего , откуда получаем искомое распределение. |
Распределение максимальной степени вершин
| Определение: |
| Распределение максимальной степени вершин случайного графа - это функция , определённая на как , то есть выражающая вероятность того, что максимальная степень вершины равна . |
| Утверждение: |
|
Будем выводить формулу для через распределение степеней вершин . Максимальная степень вершины равна тогда и только тогда, когда не существует вершины степенью больше . Таким образом, нужно посчитать вероятность события .
- вероятность того, что вершина имеет степень . Тогда вероятность того, что имеет одну из степеней - . Нам нужно обратное событие, при наступлении которого вершина имеет степень больше . Его вероятность равна . События независимы, поэтому получаем: |