Целочисленный двоичный поиск
Определение: |
Целочисленный двоичный поиск (бин. поиск) (от англ. Binary Search) — алгоритм поиска объекта по заданному признаку во множестве объектов, упорядоченных по тому же самому признаку. |
Формулировка задачи
Пусть нам дан упорядоченный массив, состоящий только из целочисленных элементов. Нам надо найти в нём индекс, по которому находится искомый элемент, или же мы можем находить интервалы вхождения искомого элемента. Для этой задачи мы и можем использовать двоичный поиск.
Принцип работы
Двоичный поиск заключается в том, что на каждом шаге множество объектов делится на две части и в работе остаётся та часть множества, где находится искомый объект. Или же, в зависимости от постановки задачи, мы можем остановить процесс, когда мы получим первый или же последний индекс вхождения элемента. Последнее условие — это левосторонний/правосторонний двоичный поиск.
Правосторонний/левосторонний целочисленный двоичный поиск
Когда мы ищем правосторонним бинарным поиском, то он возвращает индекс самого правого вхождения заданного значения
.Когда же поиск левосторонний, возвращается индекс самого левого вхождения заданного значения
.Это разделение помогает находить количество подряд идущих равных значений.
Например:
Задан отсортированный массив
Правосторонний поиск двойки выдаст в результате
, в то время как левосторонний выдаст .От сюда следует, что количество подряд идущих двоек равно длине отрезка
, то есть .Если искомого элемента в массиве нет, то правосторонний поиск выдаст минимальный элемент, больший искомого, а левосторонний наоборот, максимальный элемент, меньший искомого.
Алгоритм двоичного поиска
Идея поиска заключается в том, чтобы брать элемент посередине, между границами, и сравнивать его с искомым. В случае равенства возвращать его, а если искомое больше(в случае правостороннего — не меньше), чем элемент сравнения, то сужаем область поиска так, чтобы новая левая граница была равна индексу середины предыдущей области. В противном случае присваиваем это значение правой границе. Проделываем эту процедуру до тех пор, пока правая граница больше левой более чем на
, или же пока мы не найдём искомый индекс.Код
binSearch(l, r) // l, r - левая и правая границы while l < r - 1 // запускаем цикл m = (l + r) / 2; // m - середина области поиска if a[m] < k l = m; else r = m; // сужение границ
В случае правостороннего поиска изменится знак сравнения при сужении границ на (
).Инвариант цикла: пусть левый индекс меньше или равен искомого элемента, а правый — строго больше, тогда если
, то понятно, что — самое правое вхождение (так как следующее уже больше).См. также
Источники
- Д. Кнут - Искусство программирования (Том 3, 2-е издание)