Отношение связности, компоненты связности
Содержание
Случай неориентированного графа
| Определение: |
| Две вершины и называются связными, если в графе существует путь из в . |
| Теорема: |
Связность - отношение эквивалентности. |
| Доказательство: |
|
Рефлексивность: (очевидно). Симметричность: (в силу неориентированности графа). Транзитивность: . Действительно, сначала пройдем от до , затем от до , что и означает существования пути . |
| Определение: |
| Компонентой связности называется класс эквивалентности относительно связности. |
| Определение: |
| Граф называется связным, если он состоит из одной компоненты связности. В противном случае граф называется несвязным. |
Случай ориентированного графа
В общем случае для ориентированного графа существование пути — не симметричное отношение, поэтому вместо понятия связности различают понятие слабой и сильной связности.
Слабая связность
| Определение: |
| Отношение на вершинах графа называется отношением слабой связности. |
| Утверждение: |
Слабая связность не является отношением эквивалентности. |
| Достаточно показать, что оно не транзитивно: . |
Сильная связность
| Определение: |
| Отношение на вершинах графа называется отношением сильной связности. |
| Теорема: |
Сильная связность - отношение эквивалентности. |
| Доказательство: |
|
Рефлексивность и симметричность очевидны. Рассмотрим транзитивность: |
| Определение: |
| Пусть — ориентированный граф. Компонентой сильной связности называется класс эквивалентности множества вершин этого графа относительно сильной связности. |
| Определение: |
| Ориентированный граф называется сильно связным, если он состоит из одной компоненты сильной связности. |