Эргодическая марковская цепь

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) [math]\pi = (\pi_1,\pi_2,\ldots )^{\top}[/math], такое что [math]\pi_i \gt 0,\; i \in \mathbb{N}[/math] и
[math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots[/math].


Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока [1] для состояний [math]A_2, \, A_3[/math]); b) слабо эргодическая, но не эргодическая цепь (граф переходов является слабо-связным) c) эргодическая цепь (сильно-связный граф переходов).

Основная теорема об эргодических распределениях

Теорема (Основная теорема об эргодических распределениях):
Пусть [math]\{X_n\}_{n \ge 0}[/math] - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей [math]P = (p_{ij}),\; i,j=1,2,\ldots[/math]. Тогда эта цепь является эргодической тогда и только тогда, когда она
  1. Неразложима (т.е. цепь Маркова такова, что её состояния образуют лишь один неразложимый класс [2]);
  2. Положительно возвратна (т.е. находится в таком состоянии, выйдя из которого возвращается в него за конечное время);
  3. Апериодична (т.е. находится в таком состоянии, которое навещается цепью через промежутки времени, не кратные фиксированному числу).

Эргодическое распределение [math]\mathbf{\pi}[/math] тогда является единственным решением системы:

[math]\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}[/math].


Пример

Пример эргодической цепи

Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида: [math]p_{ij}=0.5, i,j=1,2[/math].

Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение [math]\pi = (0.5,0.5)^{\top}[/math], такое что [math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2[/math].

См. также

Примечания

  1. Общий сток - такая [math]k[/math] вершина графа, что для любых двух различных вершин графа переходов [math]i,j \, (i\neq j)[/math], существуют ориентированные пути от вершины [math]i[/math] к вершине [math]k[/math] и от вершины [math]j[/math] к вершине [math]k[/math].
  2. Свойство сообщаемости порождает на пространстве состояний отношение эквивалентности. Порождаемые классы эквивалентности называются неразложимыми классами.

Ссылки

Литература

Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.