Примеры неразрешимых задач: проблема соответствий Поста
Версия от 17:20, 9 января 2012; Shevchen (обсуждение | вклад)
Определение: |
Дана упорядоченная пара конечных последовательностей | , где и для всех . Вопрос существования непустой последовательности индексов , удовлетворяющей условию , где для каждого j, называется проблемой соответствий Поста (ПСП).
Определение: |
Проблема соответствий Поста, для которой фиксирован элемент последовательности индексов | , называется модифицированной проблемой соответствий Поста (МПСП).
Утверждение: |
Язык пар последовательностей, для которых решение ПСП положительно, перечислим. |
Пусть даны последовательности из условия ПСП. Количество последовательностей индексов, каждый из которых находится в пределах от 1 до , длины равно . Программа-полуразрешитель устроена следующим образом:forТаким образом, язык пар указанных последовательностей полуразрешим, а значит, перечислим. for all if return 1 |
Для МПСП доказательство перечислимости имеющих положительное решение пар аналогично, но перебор индексов ведётся с
.
Определение: |
Модифицированной проблемой соответствий Поста (МПСП) называется вопрос существования последовательности индексов | , удовлетворяющих условию при для упорядоченной пары конечных последовательностей , где и .
Считаем, что Машина Тьюринга (
) никогда не приходит в - недопуск. . Задача не разрешима. Предположим, что мы умеем решать МПСП., . Таким образом выводятся следующие последовательности: и - мгновенное описание.
Если
остановится, нужно добиться того, чтобы строка закончилась. Иначе строки будут расти до бесконечности, но никогда не закончатся.построим следующую пару . должно сойтись с соответствующей в предыдущем мгновенном описании.
Соответственно
, и , а также , и . Аналогично следует поступить и с переходом на месте, или считаем, что такого не бывает.Как может быть устроен префикс решения МПСП:
:
:
Требуется добиться остановки. Для этого добавляется далее:
- ,
- или ,
- или ,
Теперь остаётся избавиться от требования фиксированного первого индекса, т.е. перейти от МПСП к ПСП:
Известно:
- Существует решение МПСП существует решение ПСП
- Не существует решения МПСП не существует решения ПСП
Необходимо:
- Не существует решения МПСП не существует решения ПСП
Возьмём экземпляр задачи МПСП:
. Вставим между каждой парой символов во всех строках символ .
:
Теперь необходимо начать с
, т.к. все остальные пары начинаются с различных символов.Возникающее однозначное соответствие может быть решением этой системы и решением исходной задачи, в которой всё начиналось с пары
.Литература
- Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений.