Кратчайший путь в ациклическом графе

Материал из Викиконспекты
Перейти к: навигация, поиск

Пусть дан ациклический ориентированный взвешенный граф. Требуется найти вес кратчайшего пути из u в v

Определение:
Кратчайший путь из u в v – это такой путь из u в v, что его сумарный вес входящих в него ребер минимален

Решение

Пусть d — массив, где d[i] — вес кратчайшего пути из u в i. Изначально значения d равны бесконечности, кроме d[u], который равен 0. Пусть w[i][j] - вес ребра из i в j. Будем обходить граф в порядке топологической сортировки. Получаем следующие соотношения:

[math] d[i] = \min\limits_{\mathop{j:j \rightsquigarrow i}} (d[j] + w[j][i]) [/math]

Так как мы обходим граф в порядке топологической сортировки, то на i-ом шаге во всех d[j] (j такие, что: существует ребро из j в i) уже записаны оптимальные ответы, и следовательно в d[i] также будет записан оптимальный ответ.

Реализация

Реализуем данный алгоритм:

 //w - матрицы как в описании, d - массив как в описании, p - массив индексов вершин графа в порядке топологической сортировки, i, j - счетчики 
inputData() //считывание данных
for i = 1 to n d[i] = infinity
p = topSort(w) //топологическая сортировка графа
d[p[u]] = 0
for i = 1 to n for j: есть ребро из p[i] в j d[j] = min(d[j], d[p[i]] + w[p[i]][j])
writeData(); // запись данных

Пример

граф из примера

Пусть дан граф со следующими весами w ребер:

1 2 3 4 5 6 7 8
1 0 - - 5 - - - -
2 1 0 1 - 4 3 - -
3 - - 0 - - 1 - -
4 - - - 0 - - - -
5 - - - 3 0 - - 1
6 - - - 5 - 0 2 -
7 - - - 2 - - 0 -
8 - - - 1 - - - 0

Требуется найти путь из 2 в 4.
Массив p будет выглядеть следующим образом:

1 2 3 4 5 6 7 8
2 3 6 7 1 5 8 4

Массив d будет выглядеть следующим образом:

1 2 3 4 5 6 7 8
1 0 3 5 3 2 4 4

Ответ равен 2.

Источники