Регулярное представление группы
Версия от 11:02, 30 июня 2010; RomanSatyukov (обсуждение | вклад)
Эта статья требует доработки!
- Необходимо оформить это в виде теоремы. После теоремы дать определение регулярного представления.
- НЕ ЗАБЫВАЙТЕ ПРО ТИРЕ!
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Рассмотрим конечную группу
, . Занумеруем элементы: . Рассмотрим преобразование всех элементов группы под действием какого-то одного:
Это отображение, очевидно, сюръективно (прообразом элемента
служит ), инъективно( ), а значит, и биективно. Иными словами, оно является перестановкой.Определим отображение
. При этом рассматривается как перестановка. Очевидно, что это отображение является гомоморфизмом: . Раз образ гомоморфизма является подгруппой, то верно утверждение: любая конечная группа изоморфна(для этого надо еще упомянуть, что различным элементам группы сопоставляются различные перестановки - в группе не бывает "двойников", которые действуют одинаково на все элементы - по крайней мере, они отличаются действием на нейтральный элемент) некоторой подгруппе достаточно большой симметрической группы. Такое представление конечной группы подгруппой перестановок называется регулярным представлением.