Эргодическая марковская цепь
| Определение: |
| Эргодическая марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса. |
Стационарный режим
Эргодические марковские цепи описываются сильно связным графом. Это означает, что в такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.
Для эргодических цепей при достаточно большом времени функционирования () наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени, т.е. .
Классификация эргодических цепей
| Определение: |
| В эргодической цепи можно выделить циклические классы. Количество циклических классов называют периодом цепи, если цепь состоит целиком из одного циклического класса, её называют регулярной. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые d шагов она оказывается в одном и том же циклическом классе. |
Таким образом, эргодические цепи делятся на регулярные и циклические.
Эргодическая теорема
| Определение: |
| Эргодическое (стационарное) распределение - распределение , такое что и (где - вероятность оказаться в -ом состоянии, выйдя из -ого, через переходов). |
Для регулярных цепей
Доказательство теоремы для случая регулярных цепей приведено в конспекте про регулярные цепи.
Для циклических цепей
| Теорема (Эргодическая теорема): |
здесь был треш |
| Доказательство: |
| В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях , которые периодически повторяются. Таким образом, никакая степень матрицы переходов не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру. блаблабла доказательство |
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Состояние меняется на противоположное, при бросании монеты, с вероятностью .
Рассмотрим матрицу, следующего вида: . Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение , такое что .
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.