Теорема Бейкера — Гилла — Соловэя

Материал из Викиконспекты
Перейти к: навигация, поиск
Теорема:
Существуют такие оракулы [math]A[/math] и [math]B[/math], что [math]\mathrm{P^A} = \mathrm{NP^A} [/math] и [math]\mathrm{P^B} \ne \mathrm{NP^B} [/math]
Доказательство:
[math]\triangleright[/math]
  • Покажем существование такого оракула [math]A[/math], что [math]\mathrm{P^A} = \mathrm{NP^A} [/math]. Рассмотрим язык [math] \mathrm{TQBF} = \{ \Phi | \Phi \--[/math] булева формула с кванторами [math], \Phi = 1\}[/math]. [math] \mathrm{TQBF} [/math] является [math]PS[/math]-полным языком.
    • [math] \mathrm{P} \subset \mathrm{NP} \Rightarrow \mathrm{P^{TQBF}} \subset \mathrm{NP^{TQBF}} [/math]
    • [math]T(p,x) \ge S(p, x)[/math], для любых [math]p, x \Rightarrow \mathrm{NP^{TQBF}} \subset \mathrm{NPS^{TQBF}}[/math]
    • По теореме Сэвича [math] \mathrm{NPS^{TQBF}} = \mathrm{PS^{TQBF}} [/math]
    • [math] \mathrm{TQBF} \in \mathrm{PS} \Rightarrow \mathrm{PS^{TQBF}} = \mathrm{PS} [/math]
    • [math] \mathrm{TQBF} \-- \mathrm{PS}[/math]-полная [math]\Rightarrow \mathrm{PS} \in \mathrm{P^{TQBF}}[/math]

Следовательно, [math]\mathrm{P^{TQBF}} = \mathrm{NP^{TQBF}}[/math]

  • Покажем существование такого оракула [math]B[/math], что [math]\mathrm{P^B} \ne \mathrm{NP^B} [/math]. Пусть [math]B\--[/math] произвольное множество, а [math]U_B = \{1^n | \exists x[/math], что [math]|x| = n\}[/math]. Ясно, что [math]\forall B: U_B \in \mathrm{NP^B}[/math] (легко написать программу, проверяющую сертификат). Построим такое множество [math]B[/math], что [math]U_B \not\in \mathrm{P^B}[/math]. Рассмотрим последовательность машин Тьюринга [math]M_i[/math], имеющих доступ к оракулу языка [math]B[/math]. Построение множество [math]B[/math] разделим на счетное число шагов. Будем строить [math]B[/math] так, что на [math]i-[/math]м шаге выполнено: [math]T(M_i, x) \ge 2^n[/math]. Очевидно, что это утверждение сильнее, чем [math]U_B \not\in \mathrm{P_B}[/math]. Начнем поэтапно строить множество [math]B[/math].
    • 0-й шаг: [math]B \leftarrow \emptyset [/math]
    • [math]i[/math]-й шаг. Будем считать шаги с 0-го по [math](i-1)[/math]-й сделаны. Тогда в [math]B[/math] на данном этапе содержится конечное число слов. Пусть самое длинное из них состоит из [math](n-1)[/math]-го символа. Запустим машину [math]M_i[/math] на входе [math]1^n[/math] на [math]2^n[/math] шагов. Когда [math]M_i[/math] требуется ответ оракула языка [math]B[/math] о слове [math]x[/math], происходит следующее:
      • Если принадлежность [math]x[/math] множеству [math]B[/math] была определена на предыдущем шаге, то она сохраняется.
      • Если принадлежность [math]x[/math] множеству [math]B[/math] не установлена ранее, то далее считаем, что [math]x \not\in B[/math].

Но [math]M_i[/math] могла остановится раньше, чем за [math]2^n[/math] шагов и вернуть какое-либо значение.

      • Если [math]M_i[/math] приняла слово, то будем считать, что в [math]B[/math] не содержится слов вида [math]\{0,1\}^n[/math]}.
      • Если [math]M_i[/math] отклонила слово, то выберем слово [math]x[/math] длины [math]n[/math], принадлежность которого [math]B[/math] еще не определено. Тогда [math]x \in B[/math].

Если [math]M_i[/math] допускает слово [math]1^n[/math], то в [math]B[/math] нет слова [math]1^n[/math]. Если [math]M_i[/math] отклоняет слово [math]1^n[/math], то в [math]B[/math] содержится слово [math]x[/math], причем [math]|x| = n[/math]. Противоречие.

Следовательно, [math]M_i[/math] не может решить язык [math]U_B[/math] за время меньшее [math]2^n[/math].
[math]\triangleleft[/math]