Статистики на отрезках. Корневая эвристика

Материал из Викиконспекты
Версия от 10:22, 24 мая 2012; Whiplash (обсуждение | вклад) (Обработка запроса)
Перейти к: навигация, поиск
Определение:
Корневая эвристика (Sqrt-декомпозиция) — это метод, или структура данных, которая позволяет выполнять некоторые ассоциативные операции над отрезками (суммирование элементов подмассива, нахождение минимума/максимума и т.д.) за [math] O(\sqrt n)[/math].


Предпосчет

Sqrt.png

Пусть нам дан массив [math]A[/math] размерности [math]n[/math]. Cделаем следующий предпосчет:

  • разделим массив [math]A[/math] на блоки длины [math]len = \lfloor \sqrt{n} \rfloor[/math] ;
  • в каждом блоке заранее предпосчитаем необходимую нам операцию;
  • результаты предпосчёта запишем в массив [math]B[/math] размерности [math]cnt[/math], где [math]cnt = \left\lceil \frac{n}{len} \right\rceil[/math] — количество блоков.


Пример реализации предпосчета для операции [math] \circ [/math]:

precalc()
    for i = 0 to n - 1
        if i % len == 0
            B[i / len] = A[i]
        else
            B[i / len] = B[i / len] [math] \circ [/math] A[i]


Пердпосчет, очевидно, происходит за [math]O(n)[/math] времени.

Обработка запроса

Sqrt(sum).png

Пусть мы получили запрос на выполнение операции на отрезке [math][l, r][/math]. Отрезок может охватить некоторые блоки массива [math]B[/math] полностью, а так же не более двух блоков (начальный и конечный) - не полностью.

Таким образом, для того чтобы найти результат операции на отрезке [math][l, r][/math] нам необходимо вручную выполнить ее на "хвостах", а потом выполнить ее для полученного результата и полных блоков, предпосчет которых мы сделали заранее.


Пример реализации обработки запроса:

[math] \circ [/math] - операция, для которой был сделан предпосчет.

request(l, r)
    left = l / len
    right = r / len
    end = (left + 1) * len - 1
    res = a[l]
    if left == right
        for i = l + 1 to r
	    res = res [math] \circ [/math] A[i]
    else
        for i = l + 1 to end
            res = res [math] \circ [/math] A[i]
        for i = left + 1 to right - 1
            res = res [math] \circ [/math] B[i]
        for i = right * len to r
            res = res [math] \circ [/math] A[i]


Размер каждого из "хвостов", очевидно, не превосходит длины блока [math]len[/math], а количество блоков не превосходит [math]cnt[/math]. Поскольку и [math]len[/math], и [math]cnt[/math] мы выбирали [math]~ ~ \approx \sqrt{n}[/math], то для выполнения операции на отрезке [math][l, r][/math] нам понадобится [math]O(\sqrt{n})[/math] времени.

Запрос на изменение элемента

Sqrt(+delta).png

Реализации данного запроса будет зависеть от того, имеет ли операция, для которой мы сделали предпосчет, обратную операцию и обладает ли она свойством коммутативности.

  • если обратная операция существует, и выполняется свойство коммутативности, то нам не придется заново пересчитывать значение для блока;
  • если хотя бы одно из условий не выполняется, то нам придется заново пересчитать значение для блока, к которому принадлежит элемент указанный в запросе, и записать полученный результат в соответствующий элемент массива [math]B[/math].


Примеры реализации:

[math]p[/math] - номер элемента из массива [math]A[/math], который необходимо заменить; [math]newValue[/math] - новое значение для данного элемента.

[math] \circ [/math] - операция, для которой был сделан предпосчет.

Запрос на изменение элемента для операции, у которой есть обратная операция, и выполняется свойство коммутативности:

change(p, newValue)
    tmp = B[p / len] [math] \circ [/math] inverse(A[p])   // inverse(A[p]) - обратный элемент
    A[p] = newValue
    B[p / len] = tmp [math] \circ [/math] newValue

Запрос на изменение элемента для операции, у которой хотя бы одно из условий не выполняется:

change(p, newValue)
    index = len * (p / len)
    A[p] = newValue
    B[p / len] = A[index]
    for i = index + 1 to index + len - 1
        B[p / len] = B[p / len] [math] \circ [/math] A[i]


Запрос на изменение элемента в первом случае происходит за [math]O(1)[/math] времени, во втором случае изменение элемента происходит за длину блока [math]len[/math], т.е. за [math]O(\sqrt{n})[/math] времени.

Источники