Задача многокритериальной оптимизации. Multiobjectivization

Материал из Викиконспекты
Версия от 01:48, 19 июня 2012; Dmkrasilnikov (обсуждение | вклад) (Критерий оптимальности)
Перейти к: навигация, поиск

Определение

Мультикритериальная оптимизация - это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.


Задача многокритериальной оптимизации

Постановка задачи

Определение:
Задача многокритериальной оптимизации:
[math]maximize \{f(x) = (f_1(x),\dots,f_K(x))\}[/math]
[math] x \in X[/math]
где [math] f(x) : X \rightarrow R^K[/math] - целевая вектор-функция, где [math]K \ge 2[/math]

Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество [math]X^* \subseteq X [/math] множество Парето оптимальных значений.

Множество Парето оптимальных значений

Определение:
Множество Парето оптимальных значений:
[math]\forall x^* \in X^* \not\exists x \in X [/math]:[math]x \succ x^*[/math], где [math]x \succ x^* \Leftrightarrow (\forall i \in 1..K, (f_i(x) \ge f_i(x^*))\land (\exists i \in 1..K, f_i(x) \gt f_i(x^*)))[/math]

Выражение [math]x \succ x^*[/math] означает, что [math]x[/math] доминирует над [math]x^*[/math]. Решения в Парето оптимальном множестве также являются эффективными или допустимыми.


Определение:
Для двух решений [math]x[/math] и [math]x'[/math] говорят [math]x \sim x'[/math] тогда и только тогда, когда [math]\exists i \in 1..K \colon f_i(x) \gt f_i(x') \land \exists j \in 1..K, j \ne i \colon f_j(x') \gt f_j(x)[/math] - такую пару решений называют несравнимой


Получение оптимальных по Парето решений

Для получения оптимальных по Парето решений используют методы скаляризации. Целевую функцию задачи многокритериальной оптимизации превращают в функцию со скалярным значением.

Функция скаляризации должна удовлетворять следующим условиям.

Пусть [math]F[/math] - функция скаляризации. Если для [math] \forall \vec y^1, \vec y^2 \in \vec f(X)[/math] выполняется:

[math]\vec y^1 \le \vec y^2 \implies F (\vec y^1 ) \lt F (\vec y^2),[/math]

тогда решение [math]\vec x^0[/math], что минимизирует [math]F[/math] до [math]X[/math], является решением по Парето. Если [math]F[/math] сохраняет отношение порядка [math]\lt [/math] в [math]\vec y[/math], то есть, если для произвольных [math]\vec y^1, \vec y^2 \in \vec f(X)[/math] выполняется:

[math]\vec y^1 \lt \vec y^2 \implies F (\vec y^1 ) \lt F (\vec y^2 ),[/math]

тогда решение [math]\vec x^0[/math], что минимизирует [math]F[/math] до [math]X[/math], является слабым по Парето. Если [math]F[/math] непрерывна на [math]\vec y[/math] и [math]\vec x^0[/math] единственная точка минимума [math]F[/math] на [math]X[/math], тогда [math]\vec x^0[/math] является решением по Парето.

Метод взвешенных множителей

[math]F_1(\vec f(\vec x)) = w_1 f_1 (\vec x) + \dots + w_r f_r (\vec x).[/math]

Недостатки: невозможность охватить все оптимальные по Парето точки из множества Парето-фронта. В задачах комбинаторной многокритериальной оптимизации множество целевых значений не является выпуклым, поэтому метод взвешенных сумм не подходит для скаляризации целевых функций для этих задач.

Функция скаляризации Чебышева

[math]F_\infty (\vec f(\vec x)) = \max_{1\leq i \leq r} w_i f_i(\vec x).[/math]

Взвешенная функция скаляризации Чебышева сохраняет отношения [math]\lt [/math] и поэтому минимум [math]F_\infty[/math] является слабым по Парето.

Метод ограничений

В качестве решения задачи принимают компромиссное решение.

Компромиссное решение - эффективное решение, которое обеспечивает одинаковые минимальные взвешенные относительные потери по всем критериям одновременно. Если [math]p_i[/math] - вес нормализованного критерия [math]w_i[/math], то величина [math]p_iw_i(x_a)=s[/math], где [math]x_0[/math] - компромиссное решение, будет постоянна для всех критериев.

Описание алгоритма

  1. Задаем вектор предпочтений [math]p=(p_1,p_2,\dots,p_k)[/math];
  2. Заменяем все критерии одним [math]s \rightarrow min[/math];
  3. К системе ограничений добавляем неравенства [math]p_iw_i(x)\leq s[/math] для каждого из критериев, где [math]p_i[/math] - вес нормализованного критерия [math]w_i[/math];
  4. Решаем полученную однокритериальную задачу симплекс-методом

Источники