Задача многокритериальной оптимизации. Multiobjectivization

Материал из Викиконспекты
Версия от 03:57, 19 июня 2012; Dmkrasilnikov (обсуждение | вклад) (Задача многокритериальной оптимизации)
Перейти к: навигация, поиск

Задача многокритериальной оптимизации

Постановка задачи

Определение:
Задача многокритериальной оптимизации:
[math]maximize \{f(x) = (f_1(x),\dots,f_K(x))\}[/math]
[math] x \in X[/math]
где [math] f(x) : X \rightarrow R^K[/math] - целевая вектор-функция, где [math]K \ge 2[/math]

Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество [math]X^* \subseteq X [/math] множество Парето оптимальных значений.

Множество Парето оптимальных значений

Определение:
Множество Парето оптимальных значений:
[math]\forall x^* \in X^* \not\exists x \in X [/math]:[math]x \succ x^*[/math], где [math]x \succ x^* \Leftrightarrow (\forall i \in 1..K, (f_i(x) \ge f_i(x^*))\land (\exists i \in 1..K, f_i(x) \gt f_i(x^*)))[/math]

Выражение [math]x \succ x^*[/math] означает, что [math]x[/math] доминирует над [math]x^*[/math].

Доминируемые решения
Определение:
Для двух решений [math]x[/math] и [math]x'[/math] говорят [math]x \sim x'[/math] тогда и только тогда, когда [math]\exists i \in 1..K \colon f_i(x) \gt f_i(x') \land \exists j \in 1..K, j \ne i \colon f_j(x') \gt f_j(x)[/math] - такую пару решений называют недоминируемой


Множество Парето оптимальных недоминируемых решений называется Парето фронтом.

Парето фронт

Получение оптимальных по Парето решений

Для выполнения оптимизации по нескольким критериям мы должны либо заменить единственную целевую

Источники