Замкнутость КС-языков относительно различных операций
В отличие от регулярных языков, КС-языки не замкнуты относительно всех теоретико-множественных операций. К примеру, дополнение и пересечение КС-языков не обязательно являются КС-языками.
Здесь и далее считаем, что
-- КС языки.Содержание
Операции с КС-языками
Объединение
Утверждение: |
также является КС-языком. |
Построим КС-грамматику для языка . Для этого рассмотрим соответствующие КС-грамматики для языков и . Пусть стартовые символы в них имеют имена и соответственно. Тогда стартовый символ для обозначим за и добавим правило .Покажем, что В обратную сторону, пусть . В левую сторону: коли и есть правило , то, по определению получаем, что . Аналогично и для . . Поскольку -- единственные правила, в которых нетерминал присутствует в правой части, а значит, либо , либо , что и требовалось доказать. |
Конкатенация
Утверждение: |
-- КС-язык. |
КС-грамматика для Доказательство аналогично случаю с объединением. выглядит следующим образом: , и -- стартовый символ. |
Замыкание Клини
Утверждение: |
-- КС-язык. |
Если | -- стартовый символ КС-грамматики для языка , то добавим в КС-грамматику для языка новый стартовый символ и правила .
Прямой и обратный гомоморфизм
В случае с прямым гомоморфизмом всё просто: строится КС-грамматика, в которой каждый символ
заменяется на . Для обратного гомоморфизма построим МП-автомат для по МП-автомату для языка .Разворот
Для того, чтобы построить КС-грамматику для языка
, необходимо развернуть все правые части правил грамматики для .Циклический сдвиг
Используется примерно та же конструкция, что и для построения ДКА, принимающего все циклические сдвиги всех слов из регулярного языка
.Дополнение, пересечение и разность
В отличие от регулярных языков, дополнение до КС-языка, пересечение КС-языков и разность КС-языков может не быть КС-языком.
Утверждение: |
не является КС-языком, однако -- КС-язык. |
То, что | -- не КС язык, доказывается с помощью леммы о накачке. Для можно составить КС-грамматику. Предоставим это читателю в качестве упражнения.
Утверждение: |
Если , то не является КС-языком. |
Но . По замкнутости КС-языков относительно конкатенации получаем, что и являются КС-языками. , что по лемме о накачке для КС-языков не является КС-языком. |
Для разности достаточно заметить, что
, поэтому разность КС-языков также необязательно является КС-языком.Более того, даже задачи определения того, является ли дополнение КС-языка КС-языком и проверки непустоты пересечения или включения КС-языков являются алгоритмически неразрешимыми.
Примеры других операций
Определение: |
Операция также не сохраняет КС-язык таковым. Рассмотрим язык . Посмотрим, что есть . Пусть . Отсюда следует, что:
А значит,
, и , и по лемме о накачке КС-языком не является.Операции над КС-языком и регулярным языком
Тем не менее, хоть пересечение двух КС-языков не обязательно является КС-языком, но пересечение КС-языка и регулярного языка -- всегда КС-язык. Для доказательства этого построим МП-автомат для пересечения регулярного языка и КС-языка.
Пусть регулярный язык задан своим ДКА, а КС-язык -- своим МП-автоматом c допуском по допускающему состоянию. Построим прямое произведение этих автоматов также, как строилось прямое произведение для двух ДКА.
Более формально, пусть
-- регулярный язык, заданный своим ДКА , и -- КС-язык, заданный своим МП-автоматом: . Тогда прямым произведением назовем следующий автомат:- . Иначе говоря, состояние в новом автомате -- пара из состояния первого автомата и состояния второго автомата.
- Стековый алфавит остается неизменным.
- . Допускающие состояния нового автомата -- пары состояний, где оба состояния были допускающими в своем автомате.
- . При этом на стек кладется то, что положил бы изначальный МП-автомат при совершении перехода из состояния ,
видя на ленте символ
и символ на вершине стека.