Схема Бернулли

Материал из Викиконспекты
Перейти к: навигация, поиск

Распределение Бернулли — описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех", например, при бросании монеты, или при моделировании удачной или неудачной хирургической операции.

Определение

Определение:
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in \mathbb (0, 1)[/math] , а неудача — с вероятностью [math] q =1 - p [/math].

Обозначим через [math] v_{n} [/math] число успехов, случившихся в [math] n[/math] испытаниях схемы Бернулли. Эта (случайная) величина может принимать целые значения от 0 до [math]n[/math] в зависимости от результатов испытаний. Например, если все [math]n [/math] испытаний завершились неудачей, то величина [math] v_{n} [/math] равна нулю.

Теорема:
Для любого [math]k = 0, 1, . . . , n [/math] вероятность получить в [math]n [/math]испытаниях [math]k[/math] успехов равна [math]P(v_{n} = k [/math] ) = [math]C^k_n[/math] [math] p ^ {k} q ^ {n - k}[/math]
Доказательство:
[math]\triangleright[/math]

Событие {[math]A = v_{n} [/math] = k} означает, что в [math]n[/math] испытаниях схемы Бернулли произошло ровно [math]k[/math] успехов. Рассмотрим один элементарный исход из события [math]A[/math]: когда первые [math]k[/math] испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события [math]A[/math] отличаются лишь расположением [math]k[/math] успехов на [math]n[/math] местах. Есть ровно [math]C^k_n[/math] cпособов расположить [math]k[/math] успехов на [math]n[/math] местах. Поэтому событие [math]A[/math] состоит из [math]C^k_n[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]

(Набор вероятностей в теореме называется биномиальным распределением вероятностей.)
[math]\triangleleft[/math]

Биномиальное распределение

Говорят, что случайная величина [math]\xi[/math] имеет биномиальное распределение с параметрами [math]n \in \mathbb N[/math] и [math] p \in \mathbb(0, 1)[/math] и пишут: [math] \xi \in \mathbb B_{n, p}[/math] если [math] \xi[/math] принимает значения [math]k = 0, 1 .. n[/math] с вероятностями [math]P(\xi = k) = C^k_n p^k (1 - p)^{n - k} [/math] . Случайная величина с таким распределением имеет смысл числа успехов в [math] n [/math] испытаниях схемы Бернулли с вероятностью успеха [math]p[/math].

Пример

Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.

Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.

[math]P(v_{10}[/math] = 4) = [math]C^4_{10}\cdot (\genfrac{}{}{}{0}{1}{2})^ {4} \cdot (\genfrac{}{}{}{0}{1}{2})^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]

[math]P(v_{10}[/math] = 5) = [math]C^5_{10}\cdot (\genfrac{}{}{}{0}{1}{2})^ {5} \cdot (\genfrac{}{}{}{0}{1}{2})^ {10 - 5}[/math] [math]~\approx ~ 0{.}246 [/math]

[math]P(v_{10}[/math] = 6) = [math]C^6_{10}\cdot (\genfrac{}{}{}{0}{1}{2})^ {6} \cdot (\genfrac{}{}{}{0}{1}{2})^ {10 - 6} [/math] [math]~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: [math]P(4)( \le [/math][math] v_{10}[/math] [math] \le [/math]6) = [math]P( v_{10} [/math] = 4) + [math]P( v_{10} [/math] = 5) + [math]P( v_{10} [/math] = 6) [math] ~\approx ~ 0{.}656 [/math]

Лемма

Лемма:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .},[/math] равна [math]P(r = k) = pq^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k [/math] − 1 испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math]
[math]\triangleleft[/math]


Теорема:
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых [math]n [/math] и [math]k[/math] имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{P(r \gt n + k)}{P(r \gt n)} [/math] (9) Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \ge [/math] 0 вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые m испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к (9), получим [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{q^{n + k}} {q^{n}} = q^{k} = P(r \gt k)[/math].

См. также

[math]\triangleleft[/math]

Пример

Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.

Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По лемме, [math] P(A_{k}) = \frac{1}{6} \cdot (\frac{5}{6})^{k - 1} [/math] События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: [math] A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .[/math] Вероятности этих объединений равны суммам вероятностей слагаемых:

[math] P(A) = \frac{}{}{}{0}{1}{6} + \frac{}{}{}{0}{1}{6} \cdot(\frac{5}{6})^{2} + \frac{1}{6}\cdot (\frac{5}{6})^{4} ... = \frac{6}{11}.[/math] Теперь аналогичным образом посчитаю вероятность для события В

[math] dpi="160" [/math] [math]P(B) = \frac{1}{6} \cdot(\frac{5}{6})+ \frac{1}{6} \cdot(\frac{5}{6})^{3} + \frac{1}{6}\cdot (\frac{5}{6})^{5} ... = \frac{5}{11}. [/math]

Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.

Пример

Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Поэтому воспользоваться формулой для числа успехов в схеме Бернулли не удаcтся. Попробуем вывести подходящую формулу. Пусть в одном испытании возможны [math] m[/math] исходов: [math]1, 2, . . . , m,[/math] и [math]i[/math]-й исход в одном испытании случается с вероятностью [math] p_{i}[/math] , где [math]p_{1} + . . . + p_{m} = 1[/math]. Обозначим через [math]P(n_{1}, . . . , n_{m})[/math] вероятность того, что в [math]n[/math] независимых испытаниях первый исход случится [math]n_{1}[/math] раз, второй исход — [math]n_{2}[/math] раз, и так далее, наконец, [math]m[/math]-й исход — [math]n_{m}[/math] раз

Теорема:
Для любого [math]n[/math] и любых неотрицательных целых чисел

[math] n_{1}, . . . , n_{m}[/math], сумма которых равна [math]n[/math], верна формула:

[math] P(n_{1}, . . . , n_{m}) =( \frac{n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!})\cdot (p_{1})^(n_{1})\cdot... \cdot(p_{m})^(n_{m}) [/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим один элементарный исход, благоприятствующий выпадению [math]n_{1}[/math] единиц, [math] n_{2}[/math] двоек, и так далее. Это результат [math]n[/math] экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей [math]p_{n_{1}}...p_{n_{m}}[/math]. Остальные благоприятные исходы отличаются лишь расположением чисел [math]1, 2, . . . , m[/math] на [math]n[/math] местах. Число таких исходов равно числу способов расположить на [math]n[/math] местах [math]n_{1}[/math] единиц, [math]n_{2}[/math] двоек,и так далее Это число равно

[math]\binom{n}{n_1}\cdot\binom{n - n_1 - n_2}{n_2} \binom{n - n_1 - n_2- n_3}{n_3} ...\cdot \binom{n - n_1 - n_2.. - n_{m -1}}{n_m} = \frac {n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!} [/math]
[math]\triangleleft[/math]

Теперь мы можем вернуться к последнему примеру и выписать ответ: так как вероятности выпадения тройки и единицы равны по [math]\genfrac{}{}{}{0}{1}{6}[/math], а вероятность третьего исхода (выпала любая другая грань) [math]\genfrac{}{}{}{0}{4}{6}[/math], то вероятность получить десять троек, три единицы и ещё два других очка равна

[math] P(10, 3, 2) = {15!\over 10! \cdot 3! \cdot 2!} \cdot ((\frac{1}{6})^(10)) \cdot (({1\over 6})^3)\cdot(({4\over6})^2) [/math]

См. также

Литература

  • Н.И Чернова 'Теория вероятности' Учебное пособие СибГУТИ— Новосибирск, 2009.