Эта статья находится в разработке!
Все рассматриваемые далее пространства считаем Банаховыми.
Естественное вложение
[math] E^* [/math] — множество линейных непрерывных функционалов над [math] E [/math]. [math] E^* [/math] называют пространством, сопряженным к [math] E [/math].
Аналогично, [math] E^{**} [/math] — пространство, сопряженное к [math] E^* [/math].
Между [math] E [/math] и [math] E^{**} [/math] существует так называемый естественный изоморфизм, сохраняющий норму точки.
TODO: ?
Введем [math] F_x [/math] следующим образом: [math] F_x (f) = f(x), f \in E^{*} [/math].
[math] F_x : E^{*} \to \mathbb{R} [/math], тогда [math] F_x \in E^{**} [/math].
Тогда само [math] F [/math] отображает [math] E [/math] в [math] E^{**} [/math].
[math] F [/math] линейно: [math] F_{\alpha x_1 + \beta x_2} = \alpha F_{x_1} + \beta F_{x_2} [/math].
[math] | F_x(f) | = |f(x)| \le \| f \| \| x \| [/math], откуда [math] \| F_x \| \le \| x \| [/math].
С другой стороны, по теореме Хана-Банаха, [math] \forall x_0 \in E, \exists f_0 \in E^* [/math], что выполняются два условия:
- [math] f_0(x_0) = \| x_0 \| [/math]
- [math] \| f_0 \| = 1 [/math].
[math] | F_{x_0} (f_0) | = f_0 (x_0) = \| x_0 \|, \| f_0 \| = 1 [/math], потому получаем, что [math] \| F_{x_0} \| \ge \| x_0 \| \implies \| F_{x_0} \| = \| x_0 \| [/math].
Значит, получившееся преобразование [math] x \mapsto F_x [/math] — изометрия, [math] \| x \| = \| F_x \| [/math], получили естественное вложение [math] E [/math] в [math] E^{**} [/math].
[math] E [/math] называется рефлексивным, если [math] E [/math] будет совпадать с [math] E^{**} [/math] при таком отображении.
Например, гильбертово пространство [math] H [/math] рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).
[math] C[0, 1] [/math] — не является рефлексивным.
Сопряженный оператор
Пусть оператор [math] A [/math] действует из [math] E [/math] в [math] F [/math], и функционал [math] \varphi [/math] принадлежит [math] F^* [/math].
Рассмотрим [math] f(x) = \varphi (Ax), | f(x) | \le \| \phi \| \| A \| \| x \| [/math].
Получили новый функционал [math] f [/math], принадлежащий [math] E^* [/math]. [math] \varphi \mapsto \varphi A [/math].
[math] \varphi A = A^* (\varphi), A^* : F^* \to E^* [/math]. [math] A^* [/math] — сопряженный оператор к [math] A [/math].
Теорема: |
Если [math] A [/math] — линейный ограниченный оператор, то [math] \| A^* \| = \| A \| [/math]. |
Доказательство: |
[math]\triangleright[/math] |
Возьмем [math] x \in E, \varphi \in F^* [/math].
[math] | A^* (\varphi, x) | = | \varphi (Ax) | \le \| A \| \| \varphi \| \| x \| [/math].
Получили, что [math] \| A^* (\varphi) \| \le \| A \| \| \varphi \| [/math], откуда [math] \| A*^ \| \le \| A \| [/math].
Для доказательства в обратную сторону используем теорему Хана-Банаха:
По определению нормы: [math] \forall \varepsilon \gt 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon \lt \| Ax \| [/math].
[math] Ax \in F [/math], по теореме Хана-Банаха подберем [math] \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| [/math].
[math] \| A^*(\varphi_0, x) \| = | \varphi_0(Ax) | = \| Ax \| \gt \| A \| - \varepsilon [/math].
[math] \| A^*(\varphi_0, x) \| \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| [/math].
Соединяя эти два неравенства, получаем, что [math] \forall \varepsilon \gt 0: \| A^* \| \gt \| A \| - \varepsilon [/math].
Устремляя [math] \varepsilon [/math] к нулю, получаем, что [math] \| A^* \| \ge \| A \| [/math], и, окончательно, [math] \| A^* \| = \| A \| [/math]. |
[math]\triangleleft[/math] |