Мажорирующий элемент
Содержание
Формулировка задачи
Требуется в массиве длиной
найти элемент, встречающийся более раз. Гарантируется, что такой элемент существует.Решение за O(N)
Алгоритм можно представить следующим образом: пусть на вечеринке собрались
людей, и каждому из них соответствует один элемент из массива. Когда встречаются двое с разными элементами, то они образуют пару и садятся. В конце концов останутся стоять только гости с одинаковыми элементами. Это и есть искомый элемент.Будем идти по массиву и запоминать элемент, для которого еще не нашлось пары. При встрече такого же элемента увеличиваем счетчик "без пары", иначе - уменьшаем. Если все элементы уже имеют пару, то говорим, что у текущего элемента пары нет.
Псевдокод
findMajorityElement(a, N)
count = 0 // количество людей, оставшихся стоять
candidate =
for i = 0 to N - 1
if count == 0 // никто не стоит
candidate = a[i] // встанет текущий элемент
count++ // увеличим количество стоящих
else // кто-то стоит
if a[i] == candidate // стоит такой же элемент
count++ // увеличим количество стоящих
else // стоит другой элемент => подобрали пару
count-- // уменьшим количество стоящих
return candidate
Доказательство
На
ом шаге выполняется следующий инвариант: если , то - мажорирующий элемент на подмассиве , либо мажорирующего элемента на данном подмассиве не существует; если , то мажорирующего элемента на данном подмассиве не существует. Нам гарантируется существование мажорирующего элемента, значит на -ом шаге не равно и содержит мажорирующий элемента. Покажем, что данный инвариант всегда выполняется.Пусть данный инвариант выполняется на
ом шаге. Тогда на ом шаге возможны 3 варианта:-
Очевидно, что на подмассиве
мажорирующего элемента не существует, так как все элементы разбились на пары. Тогда только может быть мажорирующим элементом. -
Если на подмассиве
существует мажорирующий элемент, то он находится в . Тогда, в силу равенства и , если на подмассиве существует мажорирующий элемент, то он тоже будет равен .
и -
Если на подмассиве
существует мажорирующий элемент, то он находится в . Тогда, в силу неравенства и , образовалась новая пара. Если не станет равным нулю, то опять же мажорирующим элементом может быть только candidate, так как для всех остальных мы нашли пару, а значит встречаются они не более раз. и
Всего происходит итераций, каждая из которых обрабатывается за . Итоговая асимптотика .
Обобщение на случай поиска элемента, встречающегося N/K раз
Будем пользоваться той же идеей, что и в предыдущем пункте. До этого мы садили людей парами, а теперь будем садить группами из
человек. В итоге, если искомые нами элементы есть, то они останутся стоять.Будем идти по массиву и хранить элементы, которые еще не сели. При встрече элемента, который уже есть среди стоящих, увеличиваем счетчик данного элемента на
. В противном случае смотрим, можем ли мы посадить группу и, либо ее садим, либо добавляем текущий элемент к стоящим. В конце требуется сделать проверку, что оставшиеся стоять элементы встречаются раз.Псевдокод
findMajorityElement(a, N, K) // candidates - словарь, где ключ - стоящий элемент, // значение - количество таких стоящих элементов for i = 0 to N - 1 if candidates.containsKey(a[i]) // нашли стоящий элемент candidates[a[i]]++ // увеличим счетчик else if candidates.size() < K - 1 // полная группа не образована candidates[a[i]] = 1 // добавим элемент в группу else // образовалась полная группа for element in candidates // посадим группу candidates[element]-- if candidates[element] == 0 // если никто с таким элементом не стоит candidates.remove(element) // удалим этот элемент for candidate in candidates // обнулим счетчик candidates[candidate] = 0 for i = 0 to N - 1 // посчитаем, сколько раз встречаются элементы if candidates.containsKey(a[i]) candidates[a[i]]++ for candidate in candidates // проверим, встречается ли элемент N / K раз if candidates[candidate] > N / K elements.add(candidate) return elements
Доказательство
На
-ом шаге поддерживается следующий инвариант: если на подмассиве существуют элементы, которые встречаются больше, чем раз, то все они содержатся в и размер не превышает . Тогда на -ом шаге шаге будет содержать все возможные элементы, встречающиеся более, чем раз, остается только выполнить проверку. Покажем, что данный инвариант всегда выполняется:Пусть данный инвариант выполняется на
-ом шаге. Тогда на -ом шаге возможны варианта:бла-бла-бла
бла-бла-бла
и бла-бла-бла
и
Каждая итерация в среднем выполняется за O(1) при реализации словаря на основе хэш-таблиц. Итоговая сложность O(N) с дополнительной памятью O(K).
Альтернативное решение
Выберем случайный элемент в массиве и проверим, встречается ли он больше, чем
раз. Будем делать так, пока не найдем подходящий элемент. Утверждается, что данный алгоритм в среднем работает заПсевдокод
findMajorityElement(a, N, K) while true candidate = a[random(N)] count = 0 for i = 0 to N - 1 if a[i] == candidate count++ if count > N / K return candidate
Доказательство
На каждом шаге мы берем случайный элемент. Проверка на мажорируемость выполняется за
. Вероятность, что мы выбрали элемент "удачно" составляет . Тогда, в среднем, мы будем делать проверок. Итоговая сложность .