Ортогональная сумма подпространств
Определение: |
Пусть [math]L - [/math] подпространство унитарного линейного пространства [math]E[/math], тогда говорят, что [math]x \bot L [/math], если [math]x \bot \forall y \in L [/math] |
Определение: |
Подпространство [math]M=\{[/math] все [math]x \in E: \ x \bot L \}[/math] называется ортогональным дополнением к [math]L[/math] в [math]E[/math], обозначается [math]M=L^ \bot [/math] |
Теорема: |
[math]E=L \dotplus M[/math] |
Доказательство: |
[math]\triangleright[/math] |
Шаг 1. Рассмотрим [math]\{e_1, e_2...e_k\}[/math] — ОРТН базис [math]L \ (k=dimL)[/math].
Шаг 2. Дополним [math]\{e_i\}_{i=1}^{k}[/math] до базиса [math]E[/math], получим [math]\{e_1, e_2...e_k, x_{k+1}...x_n\} \ (n=dimE)[/math].
Шаг 3. Приведем этот набор к ОРТН базису (процесс Грама-Шмидта), в итоге получим [math]\{e_i\}_{i=1}^{n}[/math] — ОРТН базис, при этом [math]\{e_i\}_{i=k+1}^{n} \in M[/math] (по определению и построению)
[math]M=[/math] ло [math]\{e_{k+1}...e_n\}[/math], то есть [math]E=L+M[/math]
Шаг 4. Докажем, что сумма должна быть прямой.
[math]\forall x=\sum\limits_{i=1}^{n}\xi^ie_i=\sum\limits_{i=1}^{k}\xi^ie_i+\sum\limits_{i=k+1}^{n}\xi^ie_i=f+g[/math], где [math]f \in L, g \in M[/math]
[math]f,g[/math] — единственные. Докажем этот факт от противного.
Пусть [math]x=f+g=f_1+g_1 \Rightarrow f-f_1=g_1-g (*)[/math].
[math]\left\langle (*),f-f_1 \right\rangle: \Vert f-f_1 \Vert^2=\left\langle g_1-g,f-f_1\right\rangle=0[/math] (так как [math](g_1-g) \in L, (f-f_1) \in M, L \bot M[/math])
[math]\Rightarrow f-f_1=0 \Rightarrow f=f_1 \Rightarrow g=g_1[/math], то есть разложение единственное, теорема доказана. |
[math]\triangleleft[/math] |
Определение: |
Прямая сумма взаимно перпендикулярных пп называется ортогональной суммой, обозначается как [math]\oplus[/math]. |
NB: [math]E=L \oplus M[/math]
Определение: |
Прямая сумма попарно перпендикулярных пп называется их ортогональной суммой. |
[math] \dotplus \sum\limits_{i=1}^{k} L_i= \oplus \sum\limits_{i=1}^{k}L_i (L_i \bot L_j, i \ne j)[/math]
Ортогональный проектор
Определение: |
Пусть [math]E=L \dotplus M[/math]
[math]\mathcal{P}_{L}^{\Vert M}[/math] называется ортогональным проектором на пп [math]L[/math] и обозначается [math]\mathcal{P}_{L}^{\bot}x[/math].
[math]\mathcal{P}_{M}^{\Vert L}[/math] называется ортогональным проектором на пп [math]M[/math] и обозначается [math]\mathcal{P}_{M}^{\bot}x[/math]. |
Определение: |
[math]x= \mathcal{P}_{L}^{\bot}x+ \mathcal{P}_{M}^{\bot}x[/math] называется разложением вектора [math]x[/math] в сумму ортогональной проекции на пп [math]L[/math] и ортогональной составляющей на пп [math]M[/math]. |
Лемма: |
Пусть [math]\{e_i\}_{i=1}^{k}[/math] — ОРТН базис [math]L \ (dimL=k)[/math] тогда [math]\mathcal{P}_{L}^{\bot}x= \sum\limits_{i=1}{k}\left\langle x,e_i\right\rangle e_i. [/math] |
Доказательство: |
[math]\triangleright[/math] |
Без ограничения общности рассмотрим [math]\{e_1..e_k, e_{k+1}..e_n\}[/math] — ОРТН базис [math]E[/math], где [math]\{e_i\}_{i=1}^{k}[/math] — ОРТН базис [math]L[/math], a [math]\{e_i\}_{i=k+1}^{n}[/math] — ОРТН базис [math]M[/math] (на остальные вектора распространим по линейности)
Шаг 1. Рассмотрим [math]e_j \ (j=1..k): \mathcal{P}_{L}^{\bot}e_j= \sum\limits_{i=1}{k}\left\langle e_j,e_i\right\rangle e_i=\left\langle e_j,e_j\right\rangle e_j=e_j \Rightarrow \forall x \in L: \mathcal{P}_{L}^{\bot}x=x[/math]
Шаг 2. Рассмотрим [math]e_s \ (s=k+1..n): \mathcal{P}_{L}^{\bot}e_s= \sum\limits_{i=1}{k}\left\langle e_s,e_i\right\rangle e_i=0 \Rightarrow \forall y \in M: \mathcal{P}_{L}^{\bot}y=0 [/math] |
[math]\triangleleft[/math] |
Лемма: |
[math] \Vert \mathcal{P}_{L}^{\bot} x \Vert \leqslant \Vert x \Vert, \ \Vert \mathcal{P}_{M}^{\bot} x \Vert \leqslant \Vert x \Vert. [/math] |
Доказательство: |
[math]\triangleright[/math] |
по теореме Пифагора [math] \Vert x \Vert^2 = \Vert \mathcal{P}_{L}^{\bot} x\Vert^2 + \Vert \mathcal{P}_{M}^{\bot} x \Vert^2. [/math]
Отсюда напрямую следует утверждение леммы. |
[math]\triangleleft[/math] |