О замене переменной в интеграле многих переменных
Как обычно, будем рассматривать функцию двух переменных.
[Тут какое-то невнятно написанное предложение про мотивацию]
Площадь сектора
. Пусть эта формула нам известна. (рис 1)КАРТИНКА КАРТИНКА[Окружности радиуса
и с общим центром. Также нарисован угол , площать - площадь сегмента, окраниченного двумя окружностями и углом.],
Или,
.
Рассмотрим полярные координаты.
Рассмотрим линии уровня.
— ГМТ, для каждой из которых значение радиуса одно и то же и равно . Аналогично, — ГМТ, для каждой из которыхМеняя в
и и , покрываем плоскость сетью окружностей и лучей.Если на написанную систему соотношений смотреть как на преобразование плоскости и смотреть образы
и , в силу их определений это будет сеть вертикалей и горизонталей.Если заштриховать фигуру, границы которой — эти линии, то её образ будет прямоугольником. При обозначении его площади за
получаем предел выше. Тогда этот предел — коэффициент искажения элементарной площади при переходе из одной системы осей в другую.
Прямоугольник
под действим переходит в , причём ( ).Итак, первый этап завершён. Найдена плотность(коэффициент искажения).
На втором этапе мы заинтегрируем эту плотность и придём к формуле
, которая будет базовой формулой для того, что бы научиться заменять переменные в двойных интегралах.Будем считать, что мы знаем, что если есть
, — образ, то , где . Это стремление равномерно по положению точки в пределах прямоугольника. (рис 5)КАРТИНКА[
преобразованием T переходит в ]
Рассмотрим квадрируемую фигуру . ;
;
, где — бесконечно малое.
По равномерной непрерывности, при
, .Тогда первое слагаемое — интегральная сумма, а второе стремится к нулю. Тогда
Пример. КАРТИНКА[Круг под действием преобразования переходит в прямоугольник.]
Плошадь круга.
Общий случай
<wikitex> Пусть $\begin{cases} x & = x(u, v)\\ y & = y(u, v)\\ \end{cases}$;
где $(x, y)$ — прямоугольные координаты, $(u, v)$ — криволинейные.
$l_u$, $l_v$ — линии уровня(координатные линии) в $OXY$.
КАРТИНКА КАРТИНКА[Кривые линии уровня и переход их под действием преобразования в стандартные линии уровня для плоскости.]
Рассмотрим элементарную клетку получвшейся криволинейной сети.
КАРТИНКА КАРТИНКА[в безобразии из предыдущей пары картинок рассматриваем элементарную клетку $E_{uv}$, зажатую между соседними линиями]
В $OXY$ элементарная клетка — прямоугольник.
$\frac{|E_{uv}|}{|E'_{uv}|} = \frac{|E_{uv}|}{\Delta u\Delta v}$
Соединим отрезками вершины клетки, получим четырёхугольник, который примерно параллелограмм, и вычислим его площадь.
Можно действовать по-другому: построить касательные к линиям уровня в точках пересечения, нормировать их, получить паралелограмм и считать его площадь.
Эти попытки связаны с тем, что хочется понять, что в общем случае будет аналогом коэффициентом
в полярных координатах.- касательные.
$\overline K_u = (x_v'; y_v')$ — касательный вектор к линии уровня $l_u$
$\overline K_v = (x_u'; y_u')$ — касательный вектор к линии уровня $l_v$
$K_u\Delta v, K_v\Delta u$ - элементарные приращения, приблизительно образующие $E_{uv}$. Построим на них параллелограмм, его площадь:
$P(u, v) = \begin{pmatrix} x_u' & y_u' \\ x_v' & y_v' \\ \end{pmatrix} $
$J(u, v) = det(P(u, v))$;
$ S = |J(u, v)|\Delta u \Delta v$.
Для $p \in E_p$, $\frac{|E_p|}{|E_p'|} \xrightarrow[diam E'_p \rightarrow 0]{}{|J(u, v)|}$, получившийся предел называется якобианом преобразования.
В итоге получаем $|E| = \iint\limits_{E}dxdy = \iint\limits_{E'}|J(u, v)|dudv$
<Сюда можно впилить долгий монолог о сложности понятия площади поверхности> Собственно вот он: Анри Картан - плоскость - линейное многообразие(Подход снимает вопрос образа триангуляции)
Площадь ; где
Теорема (Замена переменных интегрирования в двойном интеграле): |
Пусть дан закон преобразования переменных,
$\begin{cases} x & = x(u, v)\\ y & = y(u, v)\\ \end{cases}$; $E$ - квадрируемая фигура в $Oxy$, якобиан преобразования определен так же, как и ранее. Пусть $f: E \rightarrow \mathbb R$. Тогда выполняется $ |
Доказательство: |
Если всё делать строго, мы утонем в некоторой дифференицальной геометрии. Будем всё делать нестрого. Покроем плоскость сетью координатных линий с малыми шагами, в результате $E$ будет разбиваться на части элементарными криволинейными параллелограммами. Перейдем к образу: КАРТИНКА КАРТИНКА[переход к образу, все так же, как и для фигуры Е ранее] Каждая прямоугольная клетка справа является образом элементарного криволинейного параллелограмма слева. $E$ - квадрируема, значит, сумма площадей параллелограммов(а в образе - прямоугольников) на границе будет сколь угодно малой при устремлении ранга разбиения к нулю. Значит, можно принебречь суммой этих групп слагаемых в соответствующих интегральных суммах. Рассмотрим кусочек интегральной суммы, $f(p_i) |
В теории интеграла Лебега будет установлена более общая теорема(Фубини) </wikitex>