Замкнутость КС-языков относительно различных операций
В отличие от регулярных языков, КС-языки не замкнуты относительно всех теоретико-множественных операций. К примеру, дополнение и пересечение КС-языков не обязательно являются КС-языками.
Здесь и далее считаем, что и — КС языки.
Содержание
Операции с КС-языками
Объединение
| Утверждение: |
также является КС-языком. |
|
Построим КС-грамматику для языка . Для этого рассмотрим соответствующие КС-грамматики для языков и . Пусть стартовые символы в них имеют имена и соответственно. Тогда стартовый символ для обозначим за и добавим правило . Покажем, что . В левую сторону: поскольку и есть правило , то, по определению получаем, что . Аналогично и для . В обратную сторону, пусть . Поскольку — единственные правила, в которых нетерминал присутствует в правой части, то это означает, что либо , либо , что и требовалось доказать. |
Конкатенация
| Утверждение: |
— КС-язык. |
|
Аналогично предыдущему случаю построим КС-грамматику для языка . Для этого добавим правило , где и — стартовые символы языков и соответственно. Остальное доказательство аналогично случаю с объединением. |
Замыкание Клини
| Утверждение: |
— КС-язык. |
| Если — стартовый символ КС-грамматики для языка , то добавим в КС-грамматику для языка новый стартовый символ и правила . |
Прямой и обратный гомоморфизм
В случае с прямым гомоморфизмом всё просто: строится КС-грамматика, в которой каждый символ заменяется на .
Для доказательства замкнутости обратного гомоморфизма будем делать аналогично доказательству для регулярных языков. Построим МП-автомат для на основе МП-автомата для языка (назовем его ). Новый автомат будет действовать следующим образом:
- Если входное слово закончилось, допускаем или не допускаем его по допускающему состоянию.
- Иначе считываем символ .
- Сохраняем в буфере.
- Запускаем на слове, находящемся в буфере.
- После того, как обработал весь буфер, переходим к пункту 2.
Если рассмотреть более формально, пусть , тогда .
- , где — суффикс (не обязательно собственный) некоторой цепочки для символа . Таким образом, первый компонент состояния является состоянием , а второй — компонентом буфера.
- определяется следующими правилами:
- . Когда буфер пуст, может прочитать свой следующий входной символ и поместить в буфер.
- Если , то . Таким образом, всегда имеет возможность имитации перехода , используя голову буфера. Если , то буфер должен быть непустым, но если , то буфер может быть пустым.
- Начальным состоянием является , т.е. стартует в начальном состоянии с пустым буфером.
- Допускающими состояниями являются состояния , где .
Таким образом получаем, что , то есть автомат допускает те и только те слова, которые принадлежат языку .
Разворот
Для того, чтобы построить КС-грамматику для языка , необходимо развернуть все правые части правил грамматики для .
Покажем, что . Докажем индукцией по длине порождения в грамматике .
База. .
В грамматике существует правило и, так как мы развернули все правые части правил, то .
Предположение индукции. Пусть менее чем за шагов, тогда .
Переход. Пусть в порождении шагов, . Тогда оно имеет вид , где . Цепочку можно разбить на , где . Так как каждое из порождений содержит менее шагов, к ним можно применить предположение индукции и заключить, что . Так как , то , откуда следует, что .
Дополнение, пересечение и разность
В отличие от регулярных языков, дополнение до КС-языка, пересечение КС-языков и разность КС-языков может не быть КС-языком.
| Утверждение: |
не является КС-языком, однако — КС-язык. |
| То, что — не КС язык, доказывается с помощью леммы о разрастании. Для можно составить КС-грамматику. |
| Утверждение: |
Если , то не является КС-языком. |
|
. По замкнутости КС-языков относительно конкатенации получаем, что и являются КС-языками. Но , что по лемме о разрастании для КС-языков не является КС-языком. |
Для разности достаточно заметить, что , поэтому разность КС-языков также необязательно является КС-языком.
Более того, задачи определения того, является ли дополнение КС-языка КС-языком и проверки непустоты пересечения КС-языков являются алгоритмически неразрешимыми.
Примеры других операций
| Определение: |
Операция также не сохраняет КС-язык таковым. Рассмотрим язык . — КС-язык. Посмотрим, что есть . Пусть . Отсюда следует, что:
А значит, , и , и по лемме о разрастании КС-языком не является.
Операции над КС-языком и регулярным языком
Пересечение
Тем не менее, хоть пересечение двух КС-языков не обязательно является КС-языком, но пересечение КС-языка и регулярного языка — всегда КС-язык. Для доказательства этого построим МП-автомат для пересечения регулярного языка и КС-языка.
Пусть регулярный язык задан своим ДКА, а КС-язык — своим МП-автоматом c допуском по допускающему состоянию. Построим прямое произведение этих автоматов так же, как строилось прямое произведение для двух ДКА.
Более формально, пусть — регулярный язык, заданный своим ДКА , и — КС-язык, заданный своим МП-автоматом: . Тогда прямым произведением назовем следующий автомат:
- . Иначе говоря, состояние в новом автомате — пара из состояния первого автомата и состояния второго автомата.
- Стековый алфавит остается неизменным.
- . Допускающие состояния нового автомата — пары состояний, где оба состояния были допускающими в своем автомате.
- . При этом на стек кладется то, что положил бы изначальный МП-автомат при совершении перехода из состояния ,
видя на ленте символ и символ на вершине стека.
Этот автомат использует в качестве состояний пары из двух состояний каждого автомата, а за операции со стеком отвечает только МП-автомат. Слово допускается этим автоматом слово допускается и ДКА и МП-автоматом, то есть язык данного автомата совпадает с .
Разность
Разность КС-языка и регулярного языка выражается следующим образом: , а, поскольку регулярные языки замкнуты относительно дополнения, то разность можно выразить через пересечение.
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — C. 302-304 : ISBN 5-8459-0261-4 (рус.)