Примеры матроидов

Материал из Викиконспекты
Перейти к: навигация, поиск

Матричный матроид

Определение:
Пусть [math]V[/math] — векторное пространство над телом [math]F[/math], пусть набор векторов [math]V_i = \mathcal{f} v_1,\dots,v_n\mathcal {g}[/math] из пространства [math]V[/math] является носителем [math]X[/math]. Элементами независимого множества [math]I[/math] данного матроида являются множества линейно-независимых векторов из набора [math]v_ 1,\dots,v_n[/math]. Тогда [math]M = \langle V_i, I \rangle [/math], называется матричным матроидом (vector matroid)
Лемма:
Матричный матроид является матроидом.
Доказательство:
[math]\triangleright[/math]

Проверим выполнение аксиом независимости:

1) [math]\varnothing \in I[/math]

Множество в котором нет векторов является линейно-независимым.

2) [math]A \subset B, B \in I \Rightarrow A \in I[/math]

Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым.

3) [math]A \in I, B \in I, \left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I[/math]

Так как [math]A \in I,[/math] то [math]dim \mathcal{L}(A) = \left\vert A \right\vert[/math]. По условию [math]\left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \exists x \in B: x \notin \mathcal{L}(A)[/math], то есть [math]x \notin A[/math]. Тогда [math] A \cup \mathcal{f} x \mathcal {g}[/math] линейно-независимо по определению линейной оболочки.
[math]\triangleleft[/math]

Графовый матроид

Определение:
Пусть [math]G = \langle V, E \rangle[/math] — неориентированный граф. Тогда [math]M = \langle E, I \rangle [/math], где [math]I[/math] состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом (graphic matroid).
Лемма:
Графовый матроид является матроидом.
Доказательство:
[math]\triangleright[/math]

Проверим выполнение аксиом независимости:

1) [math]\varnothing \in I[/math]

Пустое множество является ациклическим, а значит входит в [math]I[/math].

2) [math]A \subset B, B \in I \Rightarrow A \in I[/math]

Очевидно, что любой подграф леса, так же является лесом, а значит входит в [math]I[/math] вследствие своей ацикличности.

3) [math]A \in I, B \in I, \left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I[/math]

В графе [math]G_A = \langle V, A \rangle [/math] как минимум две компоненты связанности, иначе [math]G_A[/math] являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью.

Допустим в [math]B[/math] не существует ребра, соединяющего две различные компоненты связанности из [math]G_A[/math], значит любая компонента связанности из [math]G_B[/math] целиком вершинно-входит в какую-либо компоненту из [math]G_A[/math]. Рассмотрим любую компоненту связанности Q из [math]G_A[/math], у неё [math]k[/math] вершин и [math]k - 1[/math] рёбер. Теперь рассмотрим все компоненты связанности [math]P_i[/math] из [math]G_B[/math], вершинно-входящие в [math]Q[/math], пусть их [math]m[/math] штук, тогда суммарное количество рёбер из [math]P_i[/math] равно [math]k - m[/math], что не превосходит [math]k - 1[/math] (количество рёбер в [math]Q[/math]). Просуммируем неравенство по всем компонентам связанности из [math]G_A[/math] и получим [math]\left\vert A \right\vert \geqslant \left\vert B \right\vert[/math], что противоречит условию. Значит предположение не верно, и в [math]B[/math] существует искомое ребро [math]x[/math] из разных компонент связанности [math]G_B[/math].
[math]\triangleleft[/math]

Трансверсальный матроид

Определение:
Пусть [math]G = \langle X, Y, E \rangle[/math] — двудольный граф. [math]I = \mathcal{f} A \subset X \mid \exists [/math] паросочетание [math] P[/math], покрывающее [math]A \mathcal {g} [/math]. Тогда [math]M = \langle X, I \rangle [/math] называют трансверсальным матроидом (transversal matroid).


Лемма:
Трансверсальный матроид является матроидом.
Доказательство:
[math]\triangleright[/math]

Проверим выполнение аксиом независимости:

1) [math]\varnothing \in I[/math]

Пустое паросочетание удовлетворяет условию.

2) [math]A \subset B, B \in I \Rightarrow A \in I[/math]

Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания [math]P[/math] ребра, концами которых являются вершины из множества [math]B \setminus A[/math]. Оставшееся множество ребер будет являться паросочетанием, покрывающим [math]A[/math]. Значит [math] A \in I [/math].

3) [math]A \in I, B \in I, \left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I[/math]

Раскрасим ребра из паросочетания, соответствующего [math] B [/math] в синий цвет, а соответствующего [math] A [/math] — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится [math] \left\vert B \setminus A \right\vert [/math] ребер синего цвета, [math] \left\vert A \setminus B \right\vert [/math] ребер красного цвета, и будет выполняться соотношение [math] \left\vert B \setminus A \right\vert \gt \left\vert A \setminus B \right\vert[/math]. Рассмотрим подграф [math] H [/math], индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь [math] H' [/math]. Поменяем в [math] H' [/math] синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид [math]A \cup \mathcal{f} x \mathcal {g} [/math], где [math] x \in B \setminus A [/math]. Что значит, что [math] A \cup \mathcal{f} x \mathcal {g} \in I[/math].
[math]\triangleleft[/math]

Универсальный матроид

Определение:
Универсальным матроидом (uniform matroid) называют объект [math]U_n,_k = \langle X, I \rangle [/math], где [math]X = \{1, 2, 3, \dots, n\}, I = \mathcal{f} A \subset X \mid \left\vert A \right\vert \leqslant k\}[/math]


Лемма:
Универсальный матроид является матроидом.
Доказательство:
[math]\triangleright[/math]

Проверим выполнение аксиом независимости:

1) [math]\varnothing \in I[/math]

[math] \left\vert \varnothing \right\vert = 0 \leqslant k \Rightarrow \varnothing \in I[/math]

2) [math]A \subset B, B \in I \Rightarrow A \in I[/math]

[math] \left\vert A \right\vert \leqslant \left\vert B \right\vert \leqslant k \Rightarrow \left\vert A \right\vert \leqslant k \Rightarrow A \in I [/math]

3) [math]A \in I, B \in I, \left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I[/math]

Так как [math]\left\vert A \right\vert \lt \left\vert B \right\vert [/math] и числа в каждом множестве различны, найдётся такое число [math] x \in B [/math], которое не будет принадлежать меньшему по мощности множеству [math] A [/math].

Рассмотрим [math] A \cup \mathcal{f} x \mathcal {g} [/math]. [math]\left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \left\vert A \cup \mathcal{f} x \mathcal {g} \right\vert = \left\vert A \right\vert + 1 \leqslant \left\vert B \right\vert \leqslant k \Rightarrow A \cup \mathcal{f} x \mathcal {g} \in I[/math]
[math]\triangleleft[/math]

Матроид с выкинутым элементом

Определение:
Пусть [math]M = \langle X, I\rangle[/math] — матроид. Определим [math]M\setminus x = \langle X \setminus x, \{A | A \in I, x \not\in A\}\rangle[/math]. Для любых [math]M[/math] и [math]x[/math] получившаяся конструкция [math]M\setminus x[/math] является матроидом.


Матроид, стянутый по элементу

Определение:
Пусть [math]M = \langle X, I\rangle[/math] — матроид. Определим [math]M/x = \langle X \setminus x, \{A \setminus x | A \in I, x \in A\}\rangle[/math]. Для любых [math]M[/math] и [math]x[/math], таких что [math]\{x\}\in I,[/math] получившаяся конструкция [math]M/x[/math] является матроидом.


Урезанный матроид

Определение:
Пусть [math]M = \langle X, I \rangle[/math] - матроид. Обозначим как [math]M|_k[/math] следующую констркуцию: [math]M|_k = \langle X, \{A | A \in I, |A| \le k \}\rangle[/math], тогда [math]M|_k[/math] является матроидом.


См. также

Источники