Отношение рёберной двусвязности

Материал из Викиконспекты
Перейти к: навигация, поиск

Реберная двусвязность

Определение:
Две вершины [math]U[/math] и [math] V[/math] графа [math]G[/math] называются реберно двусвязными, если между этими вершинами существуют два реберно не пересекающихся пути.


Теорема:
Отношение реберной двусвязности является отношением эквивалентности на вершинах.
Доказательство:
[math]\triangleright[/math]

Операция [math]A \land B : (a, b) \in A \land B \Rightarrow (a, b) \in A \land (a, b) \in B[/math]

Пусть [math]R[/math] - отношение реберной двусвязности.

Рефлексивность: [math](u, u)\in R. [/math] (Очевидно)

Коммутативность: [math](u, v)\in R \Rightarrow (v, u)\in R. [/math] (Очевидно)

Транзитивность: [math](u, v)\in R [/math] и [math](v, w)\in R \Rightarrow (u, w)\in R. [/math]

Доказательство: Пусть [math]P_1,P_2 : u \rightsquigarrow v [/math] (реберно не пересекающиеся пути) и [math]Q_1,Q_2 : v \rightsquigarrow w [/math] (реберно не пересекающиеся пути).

Выберем вершины [math]x_1[/math] и [math]x_2[/math] так, что [math]P_1 \land Q_1 = (v \rightsquigarrow x_1),[/math] [math]P_2 \land Q_2 = (v \rightsquigarrow x_2)[/math] и [math](v \rightsquigarrow x_1) \land (v \rightsquigarrow x_2) = \varnothing.[/math]

Получим два реберно не пересекающихся пути [math]R_1 = (u \rightsquigarrow x_1) [/math] o [math] (x_1 \rightsquigarrow w) [/math] и [math]R_2 = (u \rightsquigarrow x_2) [/math] o [math] (x_2 \rightsquigarrow w). [/math]

Действительно, [math] (u \rightsquigarrow x_1) \land (u \rightsquigarrow x_2) = \varnothing [/math] (реберная двусвязность [math]u[/math] и [math]v[/math]), [math] (x_1 \rightsquigarrow w) \land (x_2 \rightsquigarrow w) = \varnothing [/math] (реберная двусвязность [math]v[/math] и [math]w[/math])

Если [math](u \rightsquigarrow x_1) \land (x_2 \rightsquigarrow w)= [/math] {какой-то путь} или [math](u \rightsquigarrow x_2) \land (x_1 \rightsquigarrow w)= [/math] {какой-то путь}, то тогда вершины [math]v[/math] и [math] w[/math] не связаны отношением реберной двусвязности.
[math]\triangleleft[/math]

Компоненты реберной двусвязности

Определение:
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.


См. также

Отношение вершинной двусвязности