Список заданий по ДМ 2к 2017 осень

Материал из Викиконспекты
Перейти к: навигация, поиск

<wikitex>

  1. Постройте граф с $n$ вершинами и $m$ ребрами. Здесь и далее "постройте граф с $n$ вершинами, ..." означает, что вы должны рассказать способ для любого $n$ построить искомый граф, либо рассказать, для каких $n$ такой граф существует и указать способ его построить, а для остальных $n$ доказать, что такого графа не существует. Аналогично следует поступить с другими параметрами, указанными в условии задачи.
  2. Обозначим как $N(u)$ множество соседей вершины $u$. Постройте граф с $n$ вершинами, в котором множества $N(u)$ совпадают для всех вершин $u$.
  3. Обозначим как $N[u]$ множество, содержащее вершину $u$, а также соседей вершины $u$. Постройте граф с $n$ вершинами, в котором множества $N[u]$ совпадают для всех вершин $u$.
  4. Постройте граф с $n$ вершинами, где каждая вершина имеет степень $d$.
  5. Докажите, что любой граф, содержащий хотя бы две вершины, имеет две вершины одинаковой степени.
  6. Обозначим как $\delta(G)$ минимальную степень вершины в графе, как $\Delta(G)$ - максимальную степень вершины в графе. Постройте граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) > n$.
  7. Постройте двудольный граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) > n$.
  8. Пусть для двудольного графа выполнено условие: для любой пары не соединенных ребром вершин есть вершина, связанная с обеими этими вершинами. Как устроен такой граф?
  9. Докажите, что для любого графа $G$ можно записать в каждой вершине $u$ такое число $d(u)$, что числа $d(u)$ и $d(v)$ имеют общий делитель, отличный от 1, тогда и только тогда, когда в графе $G$ есть ребро $uv$.
  10. Граф называется кубическим, если степень всех вершин равна 3. Три вершины графа образуют треугольник, если они попарно соединены ребром. Постройте кубический граф с $n$ вершинами, не содержащий треугольников.
  11. Граф называется самодополнительным, если он изоморфен своему дополнению. Приведите примеры самодополнительных графов с 4 и 5 вершинами. Докажите, что если граф является самодополнительным, то он содержит либо $4n$ либо $4n+1$ вершину для некоторого целого положительного $n$.
  12. Докажите, что для любого целого положительного $n$ существует самодополнительный граф, содержащий $4n$ вершин, а также самодополнительный граф, содержащий $4n+1$ вершину.
  13. Граф $G$ с $n$ вершинами называется графом пересечений, если можно найти такие множества $U_i$, $i$ от 1 до $n$, что вершины $i$ и $j$ связаны ребром тогда и только тогда, когда $U_i \cap U_j \ne \varnothing$. Докажите, что любой граф является графом пересечений.
  14. Числом пересечения графа $\omega(G)$ называется минимальная возможная мощность множества $S$, что граф $G$ является графом пересечений для множеств $U_i \subset S$. Опишите графы с $\omega(G) = 1$.
  15. Приведите пример графа с $\omega(G) = 2$.
  16. Приведите пример графа с $n$ вершинами, для которого $\omega(G) > n$.
  17. Докажите, что для любого графа с $n$ вершинами, где $n \ge 4$, выполнено $\omega(G) \le n^2/4$.
  18. Обозначим как $C_n$ цикл из $n$ вершин. Найдите $\omega(C_n)$.
  19. Найдите асимптотическое поведение $\omega(\overline{C_n})$.
  20. Колесом $C_n + K_1$ называется граф, состоящий из цикла, содержащего $n$ вершин, и еще одной вершины $u$, причем все вершины цикла соединены с $u$. Найдите $\omega(C_n + K_1)$.
  21. Докажите, что каждый циклический путь нечетной длины содержит простой цикл.
  22. Докажите или опровергните, что объединение двух любых простых путей из вершины $u$ в вершину $v$ содержит цикл.
  23. Докажите, что граф связен тогда и только тогда когда для любого разбиения его множества вершин $V$ на два непустых непересекающихся множества $X$ и $Y$ существует ребро, соединяющее эти множества.
  24. Докажите, что в связном графе любые два самых длинных простых пути имеют общую вершину.
  25. Докажите или опровергните, что в связном графе все самые длинные простые пути имеют общую вершину.
  26. Обозначим как $\delta(G)$ минимальную степень вершины в графе. Докажите, что если в графе с $n$ вершинами $\delta(G) > (n - 1) / 2$, то он связен.
  27. Докажите, что либо граф $G$, либо его дополнение $\overline{G}$ связен.
  28. Будем говорить, что $G$ связан короткими путями, если между любыми двумя вершинами в $G$ есть путь длины не более 3. Докажите, что либо $G$, либо $\overline G$ связан короткими путями.
  29. Найдите максимальное число ребер в графе с $n$ вершинами, не содержащем четных простых циклов.
  30. Докажите, что граф с $n$ вершинами и $n + 4$ ребрами содержит два простых цикла, не имеющих общих ребер.
  31. Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения.
  32. Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост.
  33. Какое максимальное число точек сочленения может быть в графе с $n$ вершинами?
  34. Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это $R^*$.
  35. Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой.
  36. Каждое дерево является двудольным графом. А какие деревья являются полными двудольными графами?
  37. Доказать, что следующие четыре утверждения для связного графа $G$ эквивалентны: (1) любое ребро является мостом (2) $G$ является деревом (3) любой блок $G$ является $K_2$ (4) любое непустое пересечение связных подграфов $G$ связно.
  38. Доказать, что следующие четыре утверждения для связного графа $G$ эквивалентны: (1) $G$ содержит ровно один простой цикл (2) число вершин и ребер $G$ совпадает (3) $G$ можно превратить в дерево удалением ровно одного ребра (4) множество ребер $G$, которые не являются мостами, образуют один простой цикл.
  39. Обозначим как $\lambda(G)$ минимальное число ребер, которое нужно удалить в графе, чтобы он потерял связность, $\kappa(G)$ - минимальное число вершин, которое нужно удалить в графе, чтобы он потерял связность (для полного графа полагаем $\kappa(G)=n-1$). Докажите, что $\kappa(G) \le \lambda(G) \le \delta(G)$.
  40. Докажите. что для любых $1 \le \kappa(G) \le \lambda(G) \le \delta(G)$ существует граф $G$ с такими параметрами.
  41. Докажите, что не существует графов с $\kappa(G) = 3$ и 7 ребрами.
  42. Докажите, что любой кубический граф, который содержит точку сочленения, содержит также мост.
  43. Пусть $G$ - полный двудольный граф, за исключением $K_{2,2}$. Докажите $\lambda(G)=\delta(G)$, почем единственный способ удалить $\lambda(G)$ ребер, чтобы граф потерял связность - удалить все ребра, инцидентные одной из вершин.
  44. Докажите, что если в связном графе любой блок эйлеров, то и весь граф эйлеров.
  45. Граф называется произвольно вычерчиваемым из вершины $u$, если следующая процедура всегда приводит к эйлеровому циклу: начиная с вершины $u$, переходим каждый раз по любому исходящему из текущей вершины ребру, по которому ранее не проходили. Докажите, что эйлеров граф является произвольно вычерчиваемым из $u$, если любой его простой цикл содержит $u$.
  46. Докажите, что если граф $G$ является произвольно вычерчиваемым из $u$, то $u$ имеет максимальную степень в $G$.
  47. Докажите, что если граф $G$ является произвольно вычерчиваемым из $u$, то либо $u$ - единственная точка сочленения в $G$, либо в $G$ нет точек сочленения.
  48. Доказать или опровегнуть, что если $G$ содержит порожденный тета-подграф (две вершины, соединенные тремя путями), то $G$ не гамильтонов.
  49. Обозначим как $G^3$ граф, в котором две вершины соединены, если они соединены в $G$ путем длины не более 3. Докажите, что если $G$ связен, то $G^3$ гамильтонов.
  50. Граф называется произвольно гамильтоновым, если следующая процедура всегда приводит к гамильтонову циклу: начиная с произвольной вершины $u$, переходим каждый раз по любому исходящему из текущей вершины ребру, другой конец которого мы ранее не посещали, либо обратно в вершину $u$, если непосещенных соседей нет. Опишите все произвольно гамильтоновы графы.
  51. Теорема "Антихватала". Докажите, что если не выполнено условие теоремы Хватала, то найдется граф с такой степенной последовательностью, не содержащий гамильтонова цикла.
  52. Докажите, что если сумма степеней любых двух несмежных вершин графа $G$ не меньше $n+1$, то любые две различные вершины $G$ можно соединить гамильтоновым путем.
  53. Докажите, что для любого $k$ существует негамильтонов граф с $\kappa(G)=k$.
  54. Обозначим как $G^2$ граф, в котором две вершины соединены, если они соединены в $G$ путем длины не более 2. Докажите, что если $G$ вершинно двусвязен, то $G^2$ гамильтонов.
  55. Докажите теорему Гуйя-Ури: если в ориентированном графе у любой вершины как входящая, так и исходящая степень хотя бы $n/2$, то он гамильтонов.
  56. Докажите усиленную версию теоремы Редеи-Камеона: в любом сильно связном турнире с $n$ вершинами есть простой цикл любой длины от $3$ до $n$.
  57. Докажите, что различные деревья имеют различные коды Прюфера.
  58. Докажите, что наименьшее число вершин в кубическом графе, в котором есть мост, равно 10.
  59. Докажите, что если $v$ — точка сочленения в $G$, то $v$ не точка сочленения в $\overline G$.
  60. Опишите все деревья с диаметром 2.
  61. Опишите все деревья с диаметром 3.
  62. Реберным графом для графа $G$ называется граф $G_E$, множество вершин которого совпадает с множеством ребер исходного графа, два ребра $e$ и $f$ соединены ребром в реберном графе, если у них есть общая инцидентная вершина. Докажите или опровергните, что если $G$ является эйлеровым, то реберный граф является гамильтоновым.
  63. Докажите или опровергните, что если $G_E$ является гамильтоновым, то граф $G$ является эйлеровым.
  64. В каком случае ребра реберного графа можно разбить на полные подграфы таким образом, чтобы каждая вершина принадлежала в точности двум из подграфов?
  65. Выразите число треугольников в реберном графе $G_E$ через число треугольников графа $G$ и набор его степеней.
  66. В каком случае связный граф $G$ имеет регулярный реберный граф?
  67. Постройте граф $G$ с $n \ge 4$ вершинами, для которого граф $G_E$ не эйлеров, а граф $G_E^2$ эйлеров.
  68. Докажите, что если $G$ содержит $n \ge 5$ вершин, то если $G_E^2$ эйлеров, то и $G_E^3$ эйлеров.
  69. Постройте минимальный по числу вершин реберный граф, в котором нет гамильтонова цикла.
  70. Докажите, что $G_E$ гамильтонов тогда и только тогда, когда граф $G$ содержит циклический реберно простой путь, содержащий хотя бы одну вершину, инцидентную каждому ребру графа $G$.

</wikitex>