CatBoost

Материал из Викиконспекты
Перейти к: навигация, поиск

Статья посвящена работе с библиотекой CatBoost



Режимы работы: 1) Регрессия (mse - функция потерь) 2) Классификация (надо сделать вероятности, функция потерь - максимизируем вероятность того что все объекты в обучающей выборке классифицированы правильно, вероятность - это сигмоида над значением формулы) predict_proba - для вероятности (складывать нельзя)/ predict - просто рез (и тут можно складывать значени] нескольких моделей) 3) Мультиклассификация 4) Ранжирования - (объекты с попарной классификацией) Максимизируем вероятность что как можно больше пар будут в правильном порядке отранжировано Ранжирование - есть сет данных и есть таргет и есть группы (запросы, дс разбит по группам, нужно лучше отранжировать группу) из группы делаем набор пар и делаем как в пред пункте) Применение ( не важно абсолютное значение формулы)



Оптимизируемые функции: Поддерживает много оптимизируетмых функций. Для конкретной модели выбирается одна оптимизируемая функция.



Метрики: Поддерживает много метрик.



Шаги обучения:


1) Строим дерево 2) Считаем значение в листьях



1) Построение дерева:

Процесс построения происходит жадно. Выбираем первую вершину, далее выбираем лучшее дерево с одной вершиной. Далее смотрим скоры и выбираем лучшее дерево. Дерево строится по слоям. Гарантировано на каждом слое один и тот же сплит (условие, по которому мы делим)

Как выбрать лучшее дерево? Смотрим на сколько меняется функция ошибки, выбираем такое дерево, чтобы оно как можно лучше приближало вектор градиентов.



В основе CatBoost лежит грдиентный бустинг. Как работает градиентный бустинг?


Градиент функции ошибки - все производные по всем значениям функции

Отметим, что существует идеальный шаг по градиенту, однако листьев в дереве меньше, чем документов в датасете. Поэтому мы можем пытаться приближать тот самый идеальный шаг. Чтобы найти лучший сплит, проверяем похожесть после одного шага алгоритма по градиенту - это скор.



Работа с датасетом:

CatBoost поддерживает несколько режимов выборки данных:

1) Бутстрап Бернулли - выбираем документ с вероятностью p. Регулируется параметром sample rate 2) Байесовский бутстрап - байесовское распределение. Регулируется параметром bagging temp


Отметим, что бутстрап используется только для выбора структуры дерева, для подсчета значения в листьях используем всю выборку. Это сделано так как выбор структуры дерева происходит долго, нужно несколько раз пересчитывать значения, поэтому использовать всю выборку - слишком дорого. Однако значения в листьях с уже готовой структурой дерева считаются один раз, и для большей точности можно позволить использовать весь датасет.



Рандомизация скора

Есть рандомизация скора. Score += random_strength * Rand (0, lenofgrad * q), где q - множитель, уменьшающийся при увеличении итерации. Таким образом, рандом уменьшается ближе к концу.рандома