Алгоритм Эрли

Материал из Викиконспекты
Версия от 01:09, 15 января 2011; Smetannikov.Ivan (обсуждение | вклад) (Новая страница: «{{Определение |definition = Пусть <tex>G = (N, \Sigma, P, S)</tex> {{---}} контекстно свободная грамматика и <tex>\omeg…»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Определение:
Пусть [math]G = (N, \Sigma, P, S)[/math] — контекстно свободная грамматика и [math]\omega = a_1 a_2 ... a_n[/math] — входная цепочка из [math]\Sigma^*[/math]. Объект вида [math][A \rightarrow X_1 X_2 ... X_k \cdot X_{k+1} ... X_m, i][/math] назовем ситуацией, относящейся к цепочке [math]\omega[/math], если [math]A \rightarrow X_1 ... X_m [/math] — правило из [math]P[/math] и [math]0 \leqslant i \leqslant n[/math]. [math]\cdot[/math] является метасимволом, не принадлежащим ни [math]N[/math], ни [math]\Sigma[/math]. [math]k \in \mathbb{N}, 0 \leqslant k \leqslant m[/math].


Определение:
Для каждого [math]0 \leqslant j \leqslant n[/math] построим список ситуаций [math]I_j[/math] такой, что [math][A \rightarrow \alpha \beta \cdot , i] \in I_j[/math] для [math]0 \leqslant j \leqslant n[/math] тогда и только тогда, когда для некоторых [math]\gamma[/math] и [math]\delta[/math] существуют выводы [math]S \Rightarrow^* \gamma A \delta, \gamma \Rightarrow^* a_1...a_i[/math] и [math]\alpha \Rightarrow^* a_{i+1} ... a_j[/math].


Определение:
Последовательность списков [math]I_0, I_1, ..., I_n[/math] называется списком разбора для входной цепочки [math]\omega[/math].


Алгоритм Эрли

Вход. контекстно свободная грамматика [math]G = (N, \Sigma, P, S)[/math] и входная цепочка [math]\omega = a_1 a_2 ... a_n[/math].
Выход. Список разбора [math]I_0, I_1, ... I_n[/math] для цепочки [math]\omega[/math].
Метод.