Алгоритм Куна для поиска максимального паросочетания
Версия от 08:49, 15 января 2011; Rost (обсуждение | вклад)
Теорема: |
Если из вершины не существует дополняющей цепи относительно паросочетания , то если паросочетание получается из изменением вдоль дополняющей цепи, то из не существует дополняющей цепи в . |
Доказательство: |
Доказательство от противного. Допустим в паросочетание внесли изменения вдоль дополняющей цепи и относительно вершины появилась дополняющая цепь. Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь существовала и в исходном паросочетании. Пусть - ближайшая к вершина, которая принадлежит и новой дополняющей цепи и цепи . Тогда - последнее ребро на отрезке цепи , - последнее ребро на отрезке цепи , <rex>QP</tex> - последнее ребро лежащее на отрезке новой дополняющей цепи.(см. рисунок). Допустим принадлежит паросочетанию , тогда ему не принадлежит. Заметим, что в паросочетание входило ребро , а ребро нет. Кроме того, ребро не лежит ни в исходном паросочетании , ни в паросочетании , в противном случае оказалось бы, что вершина инцидентна нескольким ребрам из паросочетания, что противоречит определению паросочетания. Тогда заметим, что цепь , полученная объединением цепей и , по определению будет дополняющей в паросочетании , что приводит к противоречию, поскольку в паросочетании из вершины не существует дополняющей цепи. |
Содержание
Алгоритм
Пусть дан двудольный граф
1) Просматриваем вершины из доли .
2) Будем искать дополняющую цепь из
(например, поиском в глубину).3) Если цепь найдена, инвертируем все ребра на этой цепи.
В любой момент времени текущим паросочетанием будет множество ребер, направленных из теоремы Бержа и доказанной выше теоремы.
в . Корректность работы алгоритма следует изПсевдокод
bool dfs(x): vis[x] = true for: k = py[y] if (k == -1) or ((not vis[k]) and (dfs(k))): py[y] = x return true return false Kuhn(): py[] = -1 for : vis[] = false dfs(s)
Время работы
Итак, алгоритм Куна можно представить как серию из |
| запусков обхода в глубину на всём графе. Следовательно, всего этот алгоритм исполняется за время , что в худшем случае есть .Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.