Глубокое обучение

Материал из Викиконспекты
Версия от 22:34, 10 декабря 2018; Evaleria (обсуждение | вклад) (Определение)
Перейти к: навигация, поиск

Глубокое обучение (англ. deep learning) — совокупность широкого семейства методов машинного обучения, основанных на обучении представлениям, а не специализированным алгоритмам под конкретные задачи. Глубокое обучение может быть с учителем, с частичным привлечением учителя, без учителя и с подкреплением. Несмотря на то, что данный раздел машинного обучения появился еще в 1980-х, до недавнего времени его применение было сильно ограничено из-за недостака вычислительных мощностей существовавших компьютеров. Ситуация изменилась только в середине 2000-х.

На создание моделей глубокого обучения оказали влияние некоторые процессы и паттерны, происходящие в биологических нейронных системах. Несмотря на это, данные модели во многом отличаются от биологического мозга (и в структуре и в функциях), что делает невозможным использование теорем и доказательств, применяющихся в нейробиологии.

История

  • 1943 — Искусственный нейрон Маккаллока — Питтса[1] — узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона.
  • 1949 — Принцип обучения нейронов Хебба[2] — изначально наблюдаемая причинно-следственная связь между активациями пре- и постсинаптического нейрона имеет тенденцию к усилению.
  • 1957 — Модель перцептрона предложена Фрэнком Розенблаттом[3] — математическая или компьютерная модель восприятия информации мозгом.
  • 1960 — Дельта-правило обучения перцептрона[4] — метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки.
  • 1969 — Выход книги Марвина Минска и Сеймура Паперта "Перцептроны"[5]. В данной книге математически показаны ограничения перцептронов.
  • 1974 — Метод обратного распространения ошибки впервые предложен А. И. Галушкиным и Дж. Вербосом[6] — метод вычисления градиента, который используется при обновлении весов многослойного перцептрона.
  • 1980 — Первая свёрточная нейронная сеть предложена Кунихико Фукусимой[7] — специальная архитектура искусственных нейронных сетей использующая некоторые особенности зрительной коры.
  • 1982 — Рекуррентные нейронные сети предложены Д. Хопфилдом — вид нейронных сетей, где связи между элементами образуют направленную последовательность.
  • 1991 — Проблема "исчезающего" градиента была сформулирована С. Хочрейтом. Проблема "исчезающего" градиента заключается в быстрой потере информации с течением времени.
  • 1997 — Долгая краткосрочная память предложена С. Хочрейтом и Ю. Шмидхубером[8]. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными промежутками с неопределённой продолжительностью и границами.
  • 1998 — Градиентный спуск для сверточных нейронных сетей предложен Я. Лекуном.
  • 2006 — Публикации Г. Хинтона, С. Осиндера и Я. Теха об обучении сетей глубокого доверия. Данные публикации, а также их активное освещение в средствах массовой информации смогли привлечь внимание ученых и разработчиков со всего мира к глубоким сетям.
  • 2012 — Предложение дропаута Г. Хинтоном, А. Крижевски и И. Шутковичем[9]. Дропаут (от англ. dropout) — метод регуляризации искусственных нейронных сетей, предназначен для предотвращения переобучения сети.
  • 2012 — Нейронные сети побеждают в ImageNet Challenge[10]. Данное событие ознаменовало начало эры нейронных сетей и глубокого обучения.

Начиная с 2012 года машинное обучение во-многом фокусируется на глубоких сетях. Искусственный интеллект и машинное обучение обычно упоминаются в контексте глубокого обучения.

Глубокое обучение используется во-многих сферах.

Определение

Глубокое обучение — это класс алгоритмов машинного обучения, который:

  • Использует многослойную систему нелинейных фильтров для извлечения признаков с преобразованиями. Каждый последующий слой получает на входе выходные данные предыдущего слоя.
  • Может сочетать алгоритмы обучения с учителем (пример — классификация) и без учителя (пример — анализ образца).
  • Формирует в процессе обучения слои выявления признаков на нескольких уровнях представлений, которые соответствуют различным уровням абстракции; при этом признаки организованы иерархически — признаки более высокого уровня являются производными от признаков более низкого уровня.

Нейронные сети

  • Искусственные нейронные сети (англ. artificial neural networks (ANN))[11]
  • Глубокие нейронные сети (англ. deep neural network (DNN))[12]

Применения

  • Распознавание речи[13]. Все основные коммерческие системы распознавания речи (например, Microsoft Cortana, Xbox, Skype Translator, Amazon Alexa, Google Now, Apple Siri, Baidu и iFlyTek) основаны на глубоком обучении.
  • Компьютерное зрение[на 06.12.18 не создан]. На сегодняшний день системы распознавания образов основанные на глубоком обучении уже умеют давать более точные результаты, чем человеческий глаз[14].
  • Обработка естественного языка[15]. Нейронные сети использовались для реализации языковых моделей еще с начала 2000-х годов. Изобретение LSTM помогло улучшить машинный перевод и языковое моделирование[16].
  • Обнаружение новых лекарственных препаратов. К примеру, нейронная сеть AtomNet использовалась для прогнозирования новых биомолекул — кандидатов для лечения таких заболевания, как вирус Эбола и рассеянный склероз.
  • Рекомендательные системы[17]. На сегодняшний день глубокое обучение применяется для изучения пользовательских предпочтений во многих доменах.
  • Предсказание генномных онтологий в биоинформатике[18].

Полный список возможных применений глубокого обучения[19].

Фреймворки для глубокого обучения

Сопоставление фреймворков, библиотек и отдельных программ для глубокого обучения[29].

См. также

Примечания

  1. Перейти Artificial neuron, Wikipedia
  2. Перейти Hebbian theory, Wikipedia
  3. Перейти Perceptron, Wikipedia
  4. Перейти Delta rule, Wikipedia
  5. Перейти Perceptrons book, WIkipedia
  6. Перейти Backpropagation, Wikipedia
  7. Перейти Convolutional_neural_network, Wikipedia
  8. Перейти Long short-term memory, Wikipedia
  9. Перейти Dropout, Wikipedia
  10. Перейти ImageNet Challenge, Wikipedia
  11. Перейти Artificial neural network, Wikipedia
  12. Перейти Deep neural networks , Wikipedia
  13. Перейти Speech recognition, Wikipedia
  14. Перейти Multi-column deep neural network for traffic sign classification
  15. Перейти Natural language processing, Wikipedia
  16. Перейти Sequence to Sequence Learning with Neural Networks
  17. Перейти Recommender system, Wikipedia
  18. Перейти Deep learning in bioinformatics, Wikipedia
  19. Перейти Applications of deep learning, Wikipedia
  20. Перейти TensorFlow, Wikipedia
  21. Перейти Microsoft Cognitive Toolkit, Wikipedia
  22. Перейти Wolfram Mathematica, Wikipedia
  23. Перейти Keras, Wikipedia
  24. Перейти Deeplearning4j, Wikipedia
  25. Перейти Caffe, Wikipedia
  26. Перейти PyTorch — ваш новый фреймворк глубокого обучения, habr
  27. Перейти MXNet, official site
  28. Перейти Chainer, official site
  29. Перейти Comparison of deep learning software, Wikipedia

Источники информации