Байесовские сети

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Байесовская сеть (англ. Bayesian network) — это направленный ациклический граф [math]G\ = \lt V, E\gt [/math], в котором каждой вершине [math]v \in V[/math] поставлена в соответствие случайная переменная [math]X_v[/math] и каждое ребро [math](u, v) \in E[/math] представляет прямую зависимость [math]X_v[/math] от [math]X_u[/math]. Пусть [math]Deps(v) = {u\ |\ (u,\ v)\ \in\ E}[/math], тогда в Байесовской сети каждой вершине [math]v\ \in\ V[/math] графа должно быть сопоставлено распределение условных вероятностей от вершин из [math]Deps(v)[/math].


Цепное правило для Байесовских сетей: [math]\mathrm P(X_1, \ldots, X_n) = \prod_{i=1}^n \mathrm P(X_i \mid \operatorname{parents}(X_i)).[/math]

Пример

Bayesian Student Network.png

Оценка студента (Grade) зависит от его интеллекта (Intelligence) и сложности курса (Difficulty). Студент просит у преподавателя рекомендательное письмо (Letter), предположим, что преподаватель может написать плохое или хорошее письмо в зависимости от оценки студента. Также студент сдаёт экзамен для поступления в колледж (SAT), результаты экзамена не зависят от письма преподавателя, оценки за его курс и сложности курса. Представление этой модели в Байесовской сети представлено на рисунке ниже.

С помощью цепного правила рассчитаем вероятность того, что умный студент получает B по лёгкому курсу, высокий балл по SAT и плохое рекомендательное письмо: [math] P(i1, d0, g2, s1, l0) = P(i1)P(d0)P(g2 | i1, d0)P(s1 | i1)P(l0 | g2) = 0.3*0.6*0.08*0.8*0.4 = 0.004608. [/math]