Арифметическое кодирование

Материал из Викиконспекты
Версия от 01:36, 17 января 2011; 192.168.0.2 (обсуждение) (Новая страница: «Один из алгоритмов энтропийного сжатия. В отличие от [[алгоритм Хаффмана|алгоритма Хаффма…»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Один из алгоритмов энтропийного сжатия.

В отличие от алгоритма Хаффмана, не имеет жесткого постоянного соответствия входных символов - группам бит выходного потока. Это дает алгоритму большую гибкость в представлении дробных частот встречаемости символов.

Характеристики

Обеспечивает почти оптимальную степень сжатия с точки зрения энтропийной оценки кодирования Шеннона. На каждый символ требуется почти [math]H[/math] бит, где [math]H[/math]информационная энтропия источника.

В отличие от алгоритма Хаффмана, метод арифметического кодирования показывает высокую эффективность для дробных неравномерных интервалов распределения вероятностей кодируемых символов. Однако в случае равновероятного распределения символов, например для строки бит 010101...0101 длины s метод арифметического кодирования приближается к префиксному коду Хаффмана и даже может занимать на один бит больше.

Принцип действия

Пусть у нас есть некий алфавит, а также данные о частотности использования символов (опционально). Тогда рассмотрим на координатной прямой отрезок от 0 до 1.

Назовём этот отрезок рабочим. Расположим на нём точки таким образом, что длины образованных отрезков будут равны частоте использования символа и каждый такой отрезок будет соответствовать одному символу.

Теперь возьмём символ из потока и найдём для него отрезок, среди только что сформированных, теперь отрезок для этого символа стал рабочим. Разобьём его таким же образом, как разбили отрезок от 0 до 1. Выполним эту операцию для некоторого числа последовательных символов. Затем выберем любое число из рабочего отрезка. Биты этого числа вместе с длиной его битовой записи и есть результат арифметического кодирования использованных символов потока.