Обсуждение участника:Qrort

Материал из Викиконспекты
Версия от 15:51, 12 января 2021; Qrort (обсуждение | вклад) (Морфологическая классификация галактик)
Перейти к: навигация, поиск


Машинное обучение в астрономии

Астрономия переживает стремительный рост объема и сложности данных. Существует множество проектов, исследующих и собирающих многоспектральные изображения неба, разновременную и многоволновую информацию, например, SDSS. Такие проекты предоставляют оцифрованные изображения неба, соответственно, в последние годы алгоритмы машинного обучения становятся все более популярными среди астрономов и в настоящее время используются для решения самых разнообразных задач; причиной этому служит большое количество доступных данных. В этой статье кратко приводится практическая информация о применении инструментов машинного обучения к астрономическим данным.

Классификация астрономических объектов по изображениям

Наличие в наборах данных большого количества объектов одного типа, но различных подтипов позволяет применить машинное обучение для решения задачи классификации на этих объектах.

Морфологическая классификация галактик

Классификация галактик, последовательность Хаббла

Одной из самых популярных тем классификации является морфологическая классификация галактик, позволяющая разделить их на различные типы по визуальным признакам. Для обучения моделей, призванных решать эту задачу, часто используют набор данных Galaxy Zoo, который является результатом волонтерского сотрудничества (ручной классификации галактик). Существует множество работ на эту тематику, использующих различные алгоритмы машинного обучения, как то: случайный лес[1], метод опорных векторов[2], нейронные сети[3]. Применение подходов машинного обучения в этом случае довольно прямолинейно, а разница между работами состоит в основном в представлении данных, выборе гиперпараметров и признаков классификации.

Этой задачей следует заниматься, так как возможность находить тип галактик необходима для изучения их эволюции, а также является необходимым умением для множества задач наблюдательной космологии (англ. Observational cosmology), например, для нахождения a и b. Ещё одной интересной возможностью применения таких работ является способ таким образом найти объекты, которые трудно поддаются классификации, соответственно, могут принадлежать к новым, неизученным типам галактик.

Точность классификации различных алгоритмов на данных Galaxy Zoo

Обучение с учителем

В этом разделе рассматриваются алгоритмы, наиболее часто встречающиеся в научных работах астрономической тематики, и примеры таких работ.

Метод опорных векторов

Метод опорных векторов (англ. support vector machine, SVM) является популярным алгоритмом для решения задач классификации. Астрономы используют метод опорных векторов для определения типа галактик по их морфологическим признакам [4], обучая модели на изображениях далёких галактик. Дополнительной сложностью вышеприведённой и прочих работ на ту же тему являются визуальные ограничения имеющихся изображений, такие, как мерцание, смещение, размытие и красное смещение.

Метод опорных векторов также может быть использован для классификации[5] корональных выбросов массы, определения их силы, источника и направления по данным LASCO, или для классификации звезд и галактик (возможности отличать первые от вторых).[6]

Cлучайные леса

Список признаков объекта, использующийся в классификации звезд и галактик

Случайные леса (англ. random forest) используются для решения задач классификации и регрессии. В пример можно привести следующие исследования:

  • Определение величины красного смещения по изображению[7]
  • Классификация[8] кратковременных астрономических событий и переменных звезд
  • Классификация звезд и галактик[9]

Нейронные сети

Нейронные сети (англ. Artificial neural networks, ANN) используются для решения задач классификации и регрессии. В пример можно привести следующие исследования:

Обучение без учителя

Алгоритмы обучения без учителя применительно к астрономии имеют особое значение для научных исследований, поскольку они могут быть использованы для извлечения новых знаний из существующих наборов данных и могут способствовать новым открытиям.

Случайные леса

Случайные леса могут быть использованы для определения некоей меры схожести объектов без меток[15]. Чтобы перейти от задачи обучения без учителя к задаче обучения с учителем,которую можно решать с помощью случайного леса, применяется следующая идея:

  1. Пусть набор данных имеет вид таблицы [math]N \cdot M[/math], где каждая строка представляет объект с [math]M[/math] признаками. Построим другую матрицу размера [math]N \cdot M[/math], где значениями каждого столбца будет выборка из частного распределения соответствующего признака в исходном наборе данных. Такая матрица называется синтетическим набором данных (англ. synhtetic dataset). Альтернативным вариантом построения такой матрицы является случайная перестановка каждого столбца исходной матрицы.
  2. Пометим каждый объект исходного набора данных как принадлежащий классу [math]A[/math], а каждый объект синтетического набора данных как принадлежащий классу [math]B[/math]. Обучим случайный лес на этой выборке.

На этом этапе случайный лес способен определять наличие ковариации, ведь она присутствует только в исходном наборе данных. Как следствие, самыми важными признаками объектов будут являться признаки, имеющие корреляцию с другими. Расстояние между объектами определяется следующим образом: Каждая пара объектов передается во все решающие деревья случайного леса, и их схожесть описывается как количество деревьев, которые классифицировали оба объекта как принадлежащие классу [math]A[/math], причем оба объекта должны достигнуть одного и того же листа в дереве.

Таким методом можно пользоваться, например, для нахождения в больших объемах данных объектов, не похожих на большинство других, для отдельного их изучения. В частности, с помощью такого алгоритма можно найти необычные типы галактик.[16]

K-means

Понятно, что классические алгоритмы кластеризации также могут быть применены к астрономическим данным. K-means применяется в астрономии в разных контекстах, например, для изучения спектральных классов звезд, галактик и астероидов, рентгеновского спектра объектов и так далее.[17][18][19]

Иерархическая кластеризация

Иерархическая кластеризация также применима к астрономическим данным, например, к рентгеновским спектрам, изображениям галактик и спектрам поглощения межзвездного газа.[20][21][22][23]

Примечания

Источники информации

  1. https://arxiv.org/pdf/1611.07526.pdf
  2. Huertas-Company, M., Rouan, D., Tasca, L.,Soucail, G., & Le F`evre, O. 2008, A&A, 478,971
  3. Banerji, M., Lahav, O., Lintott, C. J., et al. 2010,MNRAS, 406, 342
  4. Huertas-Company, M., Rouan, D., Tasca, L.,Soucail, G., & Le F`evre, O. 2008, A&A, 478,971
  5. Qu, M., Shih, F.Y., Jing, J. et al. Automatic Detection and Classification of Coronal Mass Ejections. Sol Phys 237, 419–431 (2006)
  6. Kov ́acs, A., & Szapudi, I. 2015, MNRAS, 448,1305
  7. Carliles, S., Budav ́ari, T., Heinis, S., Priebe, C., &Szalay, A. S. 2010, ApJ, 712, 511
  8. Bloom, J. S., Richards, J. W., Nugent, P. E., et al.2012, PASP, 124, 1175
  9. Miller, A. A., Kulkarni, M. K., Cao, Y., et al.2017, AJ, 153, 73
  10. Vanzella, E., Cristiani, S., Fontana, A., et al.2004, A&A, 423, 761
  11. Banerji, M., Lahav, O., Lintott, C. J., et al. 2010,MNRAS, 406, 342
  12. Ellison, S. L., Teimoorinia, H., Rosario, D. J., &Mendel, J. T. 2016, MNRAS, 458, L34
  13. Mahabal, A., Sheth, K., Gieseke, F., et al. 2017,ArXiv e-prints, arXiv:1709.06257
  14. Huertas-Company, M., Primack, J. R., Dekel, A.,et al. 2018, ApJ, 858, 114
  15. Shi, T., & Horvath, S. 2006, Journal ofComputational and Graphical Statistics, 15, 118
  16. Baron, D., & Poznanski, D. 2017, MNRAS, 465,4530
  17. Hojnacki, S. M., Kastner, J. H., Micela, G.,Feigelson, E. D., & LaLonde, S. M. 2007, ApJ,659, 585
  18. Galluccio, L., Michel, O., Bendjoya, P., & Slezak,E. 2008, in American Institute of Physics
  19. Simpson, J. D., Cottrell, P. L., & Worley, C. C.2012, MNRAS, 427, 1153
  20. Hojnacki, S. M., Kastner, J. H., Micela, G.,Feigelson, E. D., & LaLonde, S. M. 2007, ApJ,659, 585
  21. Baron, D., Poznanski, D., Watson, D., et al. 2015,MNRAS, 451, 332
  22. Hocking, A., Geach, J. E., Davey, N., & Sun, Y.2015, ArXiv e-prints: 1507.01589,arXiv:1507.01589
  23. Peth, M. A., Lotz, J. M., Freeman, P. E., et al.2016, MNRAS, 458, 963