Мост, эквивалентные определения
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Пусть — связный граф.
| Определение: |
| Мост (англ. bridge) графа — ребро, соединяющее две компоненты реберной двусвязности . |
Пример графа с тремя мостами
Эквивалентные определения
| Определение: |
| Мост графа — ребро, при удалении которого граф становится несвязным. |
| Определение: |
| Ребро является мостом графа , если в существуют такие вершины и , что любой простой путь между этими вершинами проходит через ребро |
| Определение: |
| Ребро является мостом графа , если существует разбиение множества вершин на такие множества и , что и ребро принадлежит любому простому пути . |
| Теорема: |
Определения (1), (2), (3) и (4) эквивалентны. |
| Доказательство: |
|
Пусть ребро соединяет вершины и . Пусть граф — связный. Тогда между вершинами и существует еще один путь, т.е. между вершинами и существуют два реберно-непересекающихся пути. Но тогда ребро не является мостом графа . Противоречие. В условиях определения (4) пусть существуют такие вершины и , что между ними существует простой путь . Но тогда граф — связный. Противоречие. Возьмем и . Тогда простой путь содержит ребро . Утверждение доказано Пусть . Пусть ребро не является мостом по определению (1). Тогда между вершинами и есть простой путь . Составим такой путь , что . Сделаем путь простым. Получим простой путь , не проходящий по ребру . Противоречие. |
См.также
Источники информации
- Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)