Лемма Римана-Лебега

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

<<>>

Эта статья находится в разработке!
Лемма (Риман-Лебег):
Пусть [math]f \in L_1[/math], тогда при [math] n \to \infty [/math] коэффициенты ряда Фурье [math]a_n \to 0[/math], [math]b_n \to 0[/math].
Доказательство:
[math]\triangleright[/math]

[math]|a_n(f)| = \frac{1}{\pi}|\int\limits_{Q}f(x)\cos{nx}dx|[/math].

Пусть [math]T_{n-1}(f)_1[/math] — полином наилучшего приближения функции [math]f[/math], степени, не большей [math]n-1[/math], в пространстве [math]L_1[/math].

Так как это сумма вида [math]\frac{c_0}{2}+\sum\limits_{k=1}^{n-1}(c_k\cos{kx}+d_k\sin{kx})[/math], то, по свойству тригонометрических функций, выполняется:

[math]\int\limits_{Q}T_{n-1}(f,x)_1 \cos{nx}dx = 0[/math].

[math]\int\limits_{Q}f(x)\cos{nx}dx = \int\limits_{Q}(f(x)-T_{n-1}(f,x)_1)\cos{nx}dx + \int\limits_{Q}T_{n-1}(f,x)_1\cos{nx}dx [/math] [math] = \int\limits_{Q}(f(x)-T_{n-1}(f,x)_1)\cos{nx}dx[/math].

Тогда [math]|a_n(f)| \le \frac{1}{\pi}\int\limits_{Q}|f(x)-T_{n-1}(f)_1| \cdot |\cos nx|dx \le \frac{1}{\pi}\int\limits_{Q}|f(x)-T_{n-1}(f)_1|dx = [/math]

[math] = \frac{1}{\pi}||f-T_{n-1}(f)_1|| = \frac{1}{\pi}E_{n-1}(f)_1[/math], то есть [math]|a_n(f)|\le \frac{1}{\pi}E_{n-1}(f)_1[/math].

По обобщенной теореме Вейерштрасса, [math]E_{n-1}(f)_1 \to 0[/math], следовательно, [math]a_n(f) \to 0[/math].

Доказательство для [math]b_n[/math] аналогично приведенному выше.
[math]\triangleleft[/math]

Следует иметь в виду, что [math]\int\limits_{Q}|f(x)||\cos{nx}|dx[/math] не стремится к 0, поэтому грубая оценка, что [math]|a_n(f)| \le \frac{1}{\pi} \int\limits_{Q}|f(x)||\cos{nx}|dx[/math] ни к чему не ведет. То, что лемма Римана-Лебега была написана для [math]2\pi[/math]-периодичных функций не имеет принципиального значения, так как на самом деле справедлив общий факт:

Лемма (Риман-Лебег):
Пусть [math]\int\limits_{\mathbb{R}}|f| \lt +\infty[/math], тогда [math]\int\limits_{\mathbb{R}}f(x)\cos(px) \to 0[/math] при [math]p \to \infty[/math].
Доказательство:
[math]\triangleright[/math]

На самом деле обе леммы равносильны.

  1. Первая получается из второй, если подставить [math]f = 0[/math] вне отрезка [math]Q[/math].
  2. В обратную сторону: так как интеграл от модуля функции сходится, то необходимо [math] | \int\limits_{|x| \gt a} f(x) \cos(px) | \le \int\limits_{|x| \gt a} |f(x)| \xrightarrow[a \to \infty]{} 0 [/math]. На отрезке [math] [-a; a] [/math] можно сжать интервал интегрирования в [math] [-\pi; \pi] [/math].
[math]\triangleleft[/math]

Из леммы Римана-Лебега получается важный результат, называемый принципом локализации Римана рядов Фурье.

Теорема (Риман, Принцип локализации):
Пусть [math]f,g \in L_1[/math], [math]0 \lt \delta \lt \pi[/math], [math]x \in \mathbb{R}[/math]. Пусть также в [math]\delta[/math]-окрестности точки [math]x[/math] выполняется [math]f = g[/math], тогда [math]\lim\limits_{n \to \infty}(S_n(f,x)-S_n(g,x))=0[/math]
Доказательство:
[math]\triangleright[/math]

Для удобства записи, в силу [math]2\pi[/math]-периодичности, сдвинем точку [math]x[/math] в ноль.

[math] S_n(f, x) = \frac1{2\pi} \int\limits_{-\pi}^{\pi} f(x+t) \frac{\sin (n+\frac12)t}{\sin \frac{t}2}dt [/math].

[math] S_n(g, x) = \frac1{2\pi} \int\limits_{-\pi}^{\pi} g(x+t) \frac{\sin (n+\frac12)t}{\sin \frac{t}2}dt [/math].

Разобьем данные интегралы на три части: [math] \int\limits_{-\pi}^{\pi} = \int\limits_{-\pi}^{-\delta} + \int\limits_{-\delta}^{\delta} + \int\limits_{\delta}^{\pi} [/math].

Рассмотрим разность двух сумм:

[math] S_n(f, x) - S_n(g, x) = \frac1{2\pi} (\int\limits_{-\pi}^{-\delta} - \int\limits_{-\pi}^{-\delta} + \int\limits_{\delta}^{\pi} - \int\limits_{\delta}^{\pi}) [/math] (интегралы по участку [math] [-\delta; \delta] [/math] равны).

Рассмотрим, например, первый из четырех интегралов:

[math] \frac1{2\pi} (\int\limits_{-\pi}^{-\delta} f(x+t) \frac1{\sin \frac{t}2} (\cos \frac{t}2 \sin nt + \sin \frac{t}2 \cos nt) dt = [/math]

[math] = \frac1{2\pi} (\int\limits_{-\pi}^{-\delta} f(x +t) \mathrm{ctg} \frac{t}2 \sin nt dt + \frac1{2\pi} \int\limits_{-\pi}^{-\delta} f(x + t) \cos nt dt )[/math].

Так как функции [math] f(x+t) \mathrm{ctg} \frac{t} 2 [/math] и [math] f(x+t) [/math] суммируемы на [math] (-\pi; -\delta) [/math], то, по только что доказанной лемме, оба интеграла стремятся к нулю при [math] n \to \infty [/math]. Аналогично поступаем с тремя остальными частями разности.
[math]\triangleleft[/math]

<<>>