Интеграл Дирихле
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Для удобства вводим обозначения:
, , где , — коэффициенты Фурье, — частичные суммы ряда Фурье, — ряд Фурье.Следуя Дирихле, запишем частичную сумму ряда Фурье посредством интеграла:
По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим
.Определение: |
Тригонометрический полином вида | называется ядром Дирихле.
Подставляя эту функцию в только что полученную формулу, приходим к следующему выражению:
Определение: |
— интеграл Дирихле. |
Из формулы для ядра видно, что ядро — четная функция, более того, если ядро заинтегрировать по всему участку , то такой интеграл равен .
Воспользуемся свойством, что если — -периодична, то . Проделав замену переменных в интеграле Дирихле, приходим к формуле:
Определение: |
. В такой форме записи частичная сумма называется интегралом свертки c ядром . |
Чтобы применять этот интеграл, найдем замкнутое выражение для ядра.
Утверждение: |
По определению ядра: .Домножим это выражение на :
Разделив обе части на , получим требуемую формулу. |
Используя эту формулу, можно записать: (пользуясь четностью ядра и линейностью интеграла)
(это проверяется непосредственно). Пусть , тогда .
Приходим к формуле:
— основная формула для изучения сходимости ряда Фурье в индивидуальной точке .