Задача о расстоянии Дамерау-Левенштейна
Определение: |
Расстояние Дамерау — Левенштейна (Damerau — Levenshtein distance) между двумя строками, состоящими из конечного числа символов — это минимальное число операций вставки, удаления, замены одного символа и транспозиции двух соседних символов, необходимых для перевода одной строки в другую. |
Является модификацией расстояния Левенштейна, отличается от него добавлением операции перестановки.
Расстояние Дамерау — Левенштейна является метрикой. (Предполагаем, что цены операций таковы, что выполнено правило треугольника: если две последовательные операции можно заменить одной, то это не ухудшает общую цену.)
Содержание
Практическое применение
Расстояние Дамерау — Левенштейна, как и метрика Левенштейна, является мерой "схожести" двух строк. Алгоритм его поиска находит применение в реализации нечёткого поиска, а также в биоинформатике (сравнение ДНК), несмотря на то, что изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал, что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау — Левенштейна часто используется в редакторских программах для проверки правописания).
Упрощённый алгоритм
Не решает задачу корректно, но бывает полезен на практике.
Здесь и далее будем использовать следующие обозначения:
и — строки, между которыми требуется найти расстояние Дамерау — Левенштейна; и — их длины соответственно.Рассмотрим алгоритм, отличающийся от алгоритма поиска расстояния Левенштейна одной проверкой (храним матрицу
, где — расстояние между префиксами строк: первыми i символами строки и первыми j символами строки ). Рекуррентное соотношение имеет вид:Ответ на задачу —
, где
Таким образом для получения ответа необходимо заполнить матрицу D, пользуясь рекуррентным соотношением. Сложность алгоритма:
. Затраты памяти: .Псевдокод алгоритма:
int DamerauLevenshteinDistance(char S[1..M], char T[1..N]) int d[0..M, 0..N] int i, j, cost // База динамики for i from 0 to M d[i, 0] = i for j from 1 to N d[0, j] = j for i from 1 to M for j from 1 to N // Стоимость замены if S[i] == T[j] then replaceCost = 0 else replaceCost = 1 d[i, j] = minimum( d[i-1, j ] + deleteCost, // удаление d[i , j-1] + insertCost, // вставка d[i-1, j-1] + replaceCost // замена ) if(i > 1 and j > 1 and S[i] == T[j-1] and S[i-1] == T[j]) then d[i, j] = minimum( d[i, j], d[i-2, j-2] + transposeCost // транспозиция ) return d[M, N]
Контрпример:
и . Расстояние Дамерау — Левенштейна между строками равно 2 ( ), однако функция приведённая выше возвратит 3. Дело в том, что использование этого упрощённого алгоритма накладывает ограничение: любая подстрока может быть редактирована не более одного раза. Поэтому переход невозможен, и последовательность действий такая: ( ).Условие многих практических задач не предполагает многократного редактирования подстрок, поэтому часто достаточно упрощённого алгоритма. Ниже представлен более сложный алгоритм, который корректно решает задачу поиска расстояния Дамерау — Левенштейна.
Корректный алгоритм
В интересах краткости положим
. При иной формулировке задачи формулы легко обобщаются на любой случай.Сложность алгоритма:
. Затраты памяти: . Однако скорость работы алгоритма может быть улучшена до .В основу алгоритма положена идея динамического программирования по префиксу. Будем хранить матрицу
, где — расстояние Дамерау — Левенштейна между префиксами строк и , длины префиксов — и соответственно.Будем заполнять матрицу следующим образом, используя рекуррентное соотношение, описанное ниже:
for i from 0 to M for j from 0 to N вычислить D(i + 1, j + 1); return D(m + 1, n + 1);
Для учёта транспозиции потребуется хранение следующей информации. Инвариант:
— индекс последнего вхождения в
— на i-й итерации внешнего цикла индекс последнего символа
Тогда если на очередной итерации внутреннего цикла положить:
, то
, где
Доказательства требует лишь формула алгоритма Вагнера — Фишера. Но действительно, при редактировании подпоследовательности несколько раз всегда существует оптимальная последовательность операций одного из двух видов:
, смысл которой — сравнение стоимости перехода без использования транспозиции ( ) со стоимостью перехода, включающего в число операций транспозицию; остальные формулы обосновываются так же, как и в доказательстве- Переставить местами соседние символы, затем вставить некоторое количество символов между ними;
- Удалить некоторое количество символов, а затем переставить местами символы, ставшие соседними.
Тогда если символ
встречался в на позиции , а символ встречался в на позиции ; то может быть получена из удалением символов , транспозицией ставших соседними и и вставкой символов . Суммарно на это будет затрачено операций, что описано в . Поэтому мы выбирали оптимальную последовательность операций, рассматрев случай с транспозицией и без неё.Псевдокод алгоритма:
int DamerauLevenshteinDistance(char S[1..M], char T[1..N]) // Обработка крайних случаев if (S == "") then if (T == "") then return 0 else return N else if (T == "") then return M int D[0..M + 1, 0..N + 1] // Динамика int INF = M + N // Большая константа // База индукции D[0, 0] = INF; for i from 0 to M D[i + 1, 1] = i D[i + 1, 0] = INF for j from 0 to N D[1, j + 1] = j D[0, j + 1] = INF int sd[0..количество различных символов в S и T] //для каждого элемента C алфавита задано значение sd[C] foreach (char Letter in (S + T)) if Letter не содержится в sd добавить Letter в sd sd[Letter] = 0 for i from 1 to M int last = 0 for j from 1 to N int i1 = sd[T[j]] int j1 = last if S[i] == T[j] then D[i + 1, j + 1] = D[i, j] last = j else D[i + 1, j + 1] = minimum(D[i, j], D[i + 1, j], D[i, j + 1]) + 1 D[i + 1, j + 1] = minimum(D[i + 1, j + 1], D[i1 + 1, j1 + 1] + (i - i1 - 1) + 1 + (j - j1 - 1)) sd[S[i]] = i return D[M + 1, N + 1]