Методы решения задач теории расписаний
Содержание
Сведение к другой задаче
При сведении текущей задачи теории расписаний к какой-то другой (не обязательно задаче теории расписаний) необходимо доказать два пункта:
- Допустимость расписания, построенного с помощью задачи , или существование способа его трансформации в допустимое без нарушения оптимальности.
- Следствие того, что если мы оптимизируем , мы также оптимизируем ответ для (обратное в общем случае неверно).
Примечание — если требуется полиномиальное время для решения задачи, требуется, чтобы сведение к другой задаче и трансформация расписания в допустимое также происходили за полиномиальное время.
Примеры
1 | intree | Sum(w_i C_i)
Предположим, что мы уже умеем решать задачу [1]. Сведем нашу задачу к ней следующим образом:
- Развернем все ребра, теперь если работа зависела от работы , работа будет зависеть от .
- Заменим все стоимости на противоположные .
Утверждается, что решив соответствующую задачу и развернув полученное расписание, мы получим ответ для текущей задачи.
- Полученное расписание будет допустимым, так как расписание для было допустимым, и в нем никакие две работы не пересекались и не прерывались. Развернув, мы не могли нарушить это свойство. Также из-за того, что мы развернули расписание, мы добились того, что все работы выполняются в правильном порядке (в расписании для из-за того, что расписание было развернуто, порядок был нарушен для всех работ). Таким образом, получили что расписание — допустимое.
- Пусть с помощью задачи мы получили последовательность работ (не теряя общности, занумеруем их от 1 до n). Распишем по определению значение целевой функции для :
- Заметим, что первое слагаемое соответствует целевой функции для последовательности , а второе и третье слагаемые — константы, зависящие только от начальных данных и не зависящие от перестановки работ. Таким образом, оптимальное значение для также минимизирует , ч.т.д.
R || Sum(C_i)
В этой задаче дано работ и машин, причем для каждой машины длительность выполнения на ней -й работы своя и равна .
Рассмотрим произвольное допустимое расписание для этой задачи. Рассмотрим какую-то машину , пусть на ней выполняется работ. Тогда вклад этой машины в целевую функцию (не теряя общности, пронумеруем работы на этой машине от до ) рассчитывается как:
Заметим, что в каждом допустимом расписании перед каждой работой окажется коэффициент , означающий, что соответствующая работа выпллняется -й с конца. Понятно, что в различных расписаниях может принимать значения от до .
Сведем задачу к назначению каждой работы позиции с конца на машине с помощью задачи mincost-maxflow. Поместим в левую долю графа работы, в правую долю — пары из машины и коэффициента и проведем соответствующие ребра пропускной способности и стоимости , соответствующие вкладу работы в целевую функцию, если она окажется в позиции с конца на машине . Проведем из стока в левую долю ребра стоимости и пропускной способности , из правой доли в сток — также ребра стоимости и пропускной способности . Найдем в этой сети максимальный поток минимальной стоимости. Утверждается, что если ребро насыщено потоком, то работа в оптимальном расписании должна стоять на машине в позиции с конца.
- Целевые функции задачи mincost-maxflow и текущей задачи совпадают, так как у ребер между долями пропускная способность 1, а у дополнительных ребер из истока и в сток нулевая стоимость, и они не могут внести вклад в целевую функцию.
- Расписание, построенное по вышепредставленному способу действительно будет допустимым.
- Благодаря ограничениям на поток, входящий в левую долю, каждая работа будет назначена только один раз.
- Благодаря ограничениям на поток, выходящий из правой доли, на каждую позицию будет назначено не более одной работы.
- Докажем, что не возникает ситуации такой, что существует такая позиция , что в этой позиции с конца стоит какая-то работа, а в позиции с конца — нет (это противоречит определению -й с конца работы). Такая ситуация означает, что ребро оказалось насышено потоком, а ребро — не насыщено. Но стоимость ребра меньше стоимости ребра , поэтому можем переместить поток с ребра на ребро , не нарушив свойства потока и улучшив целевую функцию, что противоречит оптимальности ответа для mincost-maxflow. Следовательно, такой позиции не возникнет и расписание будет допустимым.
O | p_ij=1 | Sum(w_i C_i)
Докажем, что оптимальный ответ для равен оптимальному ответу к задаче , где прерывания позволено делать только в целые моменты времени.
- Целевые функции задач совпадают, поэтому из оптимальности следует оптимальность .
- Покажем, как получить из расписания допустимое расписание для (в расписании для допустимость нарушает то, что на одной машине выполняется несколько блоков одной работы):
- Построим двудольный граф, в левую долю которого поместим работы, а в правую — возможные моменты времени. Из вершины, соответствующей работе будет идти ребро в вершину, соответствующую временному моменту , если работа в расписании для претендует на выполнение в момент времени .
- Раскрасим ребра этого графа в цветов, из теории графов известно, что это можно сделать.
- Назначим выполнение единичного элемента работы в момент времени на машине , если соответствующее ребро раскрашено в цвет .
- После данного преобразования мы не изменим значение целевой функции (так как мы переставляем только элементы работ, выполняющихся в один и тот же момент времени). Также расписание станет допустимым для , так как по определению реберной раскраски, не будет ни одной работы, два единичных блока которых выполняется на одной машине и во все моменты времени не окажется того, что на одну машину назначено две работы.
Чтобы непосредственно решить эту задачу, воспользуемся теоремой о том, что для задачи существует оптимальное расписание без прерываний[2]. Известно, что для того, чтобы получить оптимальное расписание для такой задачи без прерываний, надо помещать работы по очереди на машины в порядке убывания весов. Длительности у всех работ совпадают, поэтому расписание будет состоять из блоков по работ и, возможно, одного неполного блока из работ. Таким образом, аналогично задаче , чтобы получить допустимое расписание, можно не строить раскраску графа, а просто циклически сдвигать последовательности работ внутри каждого блока, что позволяет достичь асимптотики .
Метод сведения задачи к задаче на параллельных машинах также работает для некоторых других open-shop задач.
Построение расписания по нижней оценке
Этот метод обычно применим к задачам, в которых целевая функция — . Построим какой-то набор нижних ограничений на произвольное расписание для задачи и возьмем из них максимальное. Затем построим произвольное допустимое расписание, достигающее этой оценки.
С помощью этого метода решаются:
Примеры
P | pmtn | C_max
- В допустимом расписании выполнение всех работ не может завершиться раньше одной из них, поэтому .
- Если все станки работали время , на них могло выполниться не больше работы, то есть и .
- Тогда .
Построим расписание, подходящее под эту границу: будем по очереди заполнять машины работами в произвольном порядке, и если очередная работа не помещается на текущей машине полностью, перенесем ее выходящую за часть на следующую машину. Благодаря первому ограничению никакая работа не будет выполняться одновременно на двух станках, а благодаря второму — не останется работы, которую мы не сможем выполнить.
O | p_ij=1 | C_max
- В допустимом расписании на каждом станке надо обработать каждую работу, поэтому .
- В допустимом расписании каждую работу нужно обработать на всех станках, причем ее нельзя обрабатывать на двух станках одновременно, поэтому .
- Тогда
Оптимальное расписание получается циклическими сдвигами последовательности и выглядит следующим образом:
- Для :
0 1 2 ... n-1 n n+1 ... m-1 m M_1 1 2 3 ... n-1 n - ... - - M_2 - 1 2 ... n-2 n-1 n ... - - . ... ... ... ... ... ... ... ... ... ... M_m-1 - - - ... ... ... ... ... n - M_m - - - ... ... ... ... ... n-1 n
- Для :
0 1 2 ... k k+1 ... n-1 n M_1 1 2 3 ... k k+1 ... n-1 n M_2 n 1 2 ... k-1 k ... n-2 n-1 . ... ... ... ... ... ... ... ... ... . ... ... ... ... ... ... ... ... ... M_m n-m+2 n-m+3 ... ... ... ... ... n-m n-m+1
Бинарный поиск по ответу
Этот способ часто подходит для задач, в которых надо минимизировать . Важно помнить, что если требуется полиномиальное по решение, оно не должно зависеть от логарифма ответа, но иногда ответ ограничен полиномом от (в частности, в ), и мы можем применить этот метод.
Примеры
O | p_ij = 1| Sum(U_i)
Перенумеруем работы по возрастанию их дедлайнов, то есть .
| Утверждение: |
Если мы можем выполнить каких-то работ, мы можем выполнить последних работ. |
| Действительно, если в допустимом расписании все периоды выполнения работы заменить на периоды выполнения работы , оно останется допустимым, так как . |
Таким образом, будем брать последние работ и пытаться составить из них допустимое расписание (для этого известен полиномиальный алгоритм за [3]). Получили решение за .