Схемная сложность и класс P/poly
Версия от 01:18, 17 мая 2012; Vincent (обсуждение | вклад)
Определения
| Определение: |
— класс языков, вычислимых семейством логических схем полиномиального размера с n входами и одним выходом, то есть: :
|
| Определение: |
Пусть C — сложностный класс, f — функция. Тогда существуют — подсказки, программа p, удовлетворяющая ограничениям C:
|
| Определение: |
| . |
Теоремы
| Теорема: |
. |
| Доказательство: |
| машина Тьюринга m такая, что . Составим логическую схему для m, как мы сделали в теореме Кука. Отсюда следует, что . |
| Теорема: |
. |
| Доказательство: |
|
Пусть , x — входная строка. Тогда существуют логические схемы . В качестве подсказки для x предоставим логическую схему . Программа p получает на вход x и и возвращает значение, вычисляемое для входа x. Запишем программу : returnЛогическая схема имеет полиномиальный. Оба условия для выполнены, . |
| Теорема: |
. |
| Доказательство: |
| Пусть . Тогда существуют — подсказки. Зафиксируем n. Числу соответствует логическая схема . Запишем программу p в виде логической схемы, которая принимает на вход слово длины n и подсказку , за счет чего распознаваться будут только слова из языка. Зашьем подсказку в самой схеме, теперь она принимает только слова длины n и определяет их принадлежность языку. |