Схема Бернулли
Версия от 19:54, 17 декабря 2012; Sergej (обсуждение | вклад)
Распределение числа успехов в n испытаниях
Определение
Определение: |
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью p ∈ (0, 1), а неудача — с вероятностью q = 1 − p. Обозначим через | число успехов, случившихся в n испытаниях схемы Бернулли. Эта (случайная) величина может принимать целые значения от нуля до n в зависимости от результатов испытаний. Например, если все n испытаний завершились неудачей, то величина равна нулю.
Теорема: |
(формула Бернулли). Для любого k = 0, 1, . . . , n вероятность получить в n испытаниях k успехов равна P( = k) = |
Доказательство: |
Событие A = { | = k} означает, что в n испытаниях схемы Бернулли произошло ровно k успехов. Рассмотрим один элементарный исход из события A: когда первые k испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна Другие элементарные исходы из события A отличаются лишь расположением k успехов на n местах. Есть ровно cпособов расположить k успехов на n местах. Поэтому событие A состоит из элементарных исходов, вероятность каждого из которых равна
Пример
Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.
Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты. P(
= 4) = ≈ 0,205;P(
= 5) = ≈ 0,246;P(
= 6) = ≈ 0,205;Сложим вероятности несовместных событий: P(4<=
<= 6) = P( = 4) + P( = 5) + P( = 6) ≈ 0,656.