Теория Гильберта-Шмидта
TODO: Как обычно, это переписанный с выключенным мозгом конспект. Автор не несёт(пока) ответственности за то, что в статье написан антинаучный бред. Хуже того, чукча не читатель, чукча писатель, и написанное даже не читалось.
В параграфе для операторов используется курсивный шрифт (
, ), а для матриц — прямой ( , ). Во-первых, для того, чтобы различать их, а во-вторых, для красоты. Грустно, что тебе, читатель этого, срать на то, написано ли или , а хочется только сдать экзамен.
TODO: Расставить точки в конце предложений, а то режет глаз.
Содержание
[убрать]
В этом параграфе будем иметь дело с Гильбертовым пространством , но над полем .
- (над ):
- (над ):
В конечномерном пространстве
( ) скалярное произведение двух векторов определялось как .В
( ) же, .Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения:
: .Нас будут интересовать только линейные ограниченные операторы
.
Определение: |
Оператор | в гильбертовом пространстве называется самосопряжённым ( ), если .
Посмотрим, что же такое самосопряжённость для конечномерного оператора в . В линейный оператор представляет из себя матрицу .
Утверждение: |
Оператор самосопряжён . |
. |
, , так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю.
Рассмотрим
, .[ , — самосопряжённый ]
Итого:
.
Утверждение: |
Если —самосопряжённый, а , то . |
Доказательство разбивается на два случая: и
из неравенства при вытекает , так как для , . . |
Теоремы о спектре самосопряженного оператора
Вещественность спектра
Теорема: |
Если — самосопряженный, то . |
Доказательство: |
Проверим, что если , то . , ,, (всюду плотно в ). С другой стороны, неравенство даёт априорную оценку , откуда следует, что — замкнуто.Значит, — биективен на . гарантирует, что обратный оператор ограничен, и, как следствие, непрерывен. Значит, |
Теорема: |
Пусть — самосопряжённый оператор. Тогда
1. 2. |
Доказательство: |
Замечание: второе свойство означает, что спектр самосопряжённого оператора состоит из почти собственных чисел
Докажем первый пункт 1. . Требуемое неравенство— непрерывность резольвентного оператора2. — в силу прошлой теоремы.Второй пункт: Покажем в прямую сторону, для этого возьмем отрицание обратной стороны доказательства первого пункта: Второй пункт — проверить самим. Это просто логическое отрицание первого. TODO: запилите кто-нибудь |
Выше мы убедились, что
Определение: |
Очевидно, что
, где :
Аналогично,
Теорема: |
Пусть — самосопряженный оператор. Тогда:
|
Доказательство: |
Пункт 1. Докажем, что из того, что следует, что . Аналогично докажем дляНужно проверять только Пусть . Проверим, что выполняется критерий вхождения в из предыдущей теоремы[неравенство Шварца] Итого: Пункт 2. Докажем, что Проверим критерий принадлежности спектру из предыдущей теоремы.
По определению подбираются ,
, Далее будем использовать обозначение .Так как , мгновенно проверяем, что удовлетворяет аксиомам скалярного произведения, а значит, для выполняется неравенство Шварца:
Надо:
Подставим , :, , |
Теорема о спектральном радиусе
Утверждение: |
Если — самосопряжённый оператор, то |
Ранее мы доказывали, что Если проверить, что , то, по предыдущему утверждению, теорема будет верна:Очевидно, достаточно проверить это утверждение только для . Остальное получится автоматически.
По самосопряжённости: [по неравенству Шварца] [ ] Итого: . Осталось доказать обратное неравенство. |
Если
— компактный, то состоит только из счётного числа собственных чисел . Обозначим за собственные подпространства. В силу самосопряжённости, .Собственные подпространства конечномерны (
). Можно считать, что в каждом из них определён ортонормированный базис.Теорема Гильберта-Шмидта
Теорема (Гильберт, Шмидт): |
Если — самосопряжённый оператор в гильбертовом пространстве , а — его (оператора) собственные подпространства, то |
Доказательство: |
Обозначим за , — ортогональное дополнение до ( ).Нужно проверить, что Элементарно проверяется, что :Проверим, что : любому, , Значит, Рассмотрим — гильбертово пространство, — самосопряжённое, Но все собственные числа Если бы у задействованы в оператор тривиальный было нетривиальное ядро, то оно стало бы собственным подпространосвом, значит, было бы задействовано в . Значит, |
Если
— самосопряжённый компактный оператор, то ОНС базис можно построить из собственных векторов, соответствующим собственным числам . Любой можно разложить в ряд Фурье по свойствам гильбертова пространства. Значит,
Получаем структуру сопряжённого компактного оператора:
( непрерывно обратим) ,
Можно приравнять коэффициенты:
(нуля быть не может, потому что )