Расчёт вероятности поглощения в состоянии
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя
. Составим матрицу G, элементы которой равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j.Теорема: |
Доказательство: |
Пусть этот переход будет осуществлён за r шагов: i → Матрица G определяется их суммированием по всем длинам пути из i в j: → → ... → → j, где все являются несущественными. Тогда рассмотрим сумму , где Q - матрица переходов между несущественными состояниями, R - из несущественного в существенное. , т.к. , а фундаментальная матрица марковской цепи |
Псевдокод
Пусть
for i = 0 to m - 1
if input[i][0] == input[i][1] and input[i][2] == 1
absorbing[input[i][0]] = true
abs++
Найдем число несущественных состояний . Теперь нужно заполнить матрицы (переходов между несущественными состояниями) и (переходов из несущественных состояний в поглощающие). Для этого создадим сначала массив где -ый элемент указывает под каким номером будет находиться -ое состояние среди существенных если оно существенное или несущественных в обратном случае, и заполним эти массивы.
count_q = 0
count_r = 0
for i = 0 to n - 1
if absorbing[i]
position[i] = count_r
count_r++
else
position[i] = count_q
count_q++
for i = 0 to m - 1
if absorbing[input[i][1]]
if !absorbing[input[i][0]]
R[position[input[i][0]]][position[input[i][1]]] = input[i][2]
else
Q[position[input[i][0]]][position[input[i][1]]] = input[i][2]
Найдем Матрицу и создадим единичную матрицу .
for i = 0 to nonabs - 1
N[i][i] = 1
E[i][i] = 1
for j = 0 to nonabs - 1
E[i][j] -= Q[i][j]
Теперь приведем матрицу к единичной методом Гаусса - Жордана, применяя те же преобразования к матрице .
for i = 0 to nonabs - 1
if E[i][i]
1
mul = E[i][i]
for j = 0 to nonabs - 1
E[i][j] /= mul
N[i][j] /= mul
for row = 0 to nonabs - 1
if i row
mul = E[row][i]
for j = 0 to nonabs - 1
E[row][j] -= mul * E[i][j]
N[row][j] -= mul * N[i][j]
В результате т.е. - фундаментальная матрица Марковской цепи. Найдем матрицу .
for i = 0 to nonabs - 1
for j = 0 to abs - 1
G[i][j] = 0
for k = 0 to nonabs - 1
G[i][j] += N[i][k] * R[k][j]
Выведем ответ: в -ой строке вероятность поглощения в -ом состоянии. Естественно, для несущественного состояния это , в ином случае где - номер соответствующий -ому состоянию в матрице (т.е. под которым оно располагалось в матрице т.е. значение ). Прибавлять 1 нужно т.к. вероятность поглотиться в -ом поглощающем состоянии, оказавшись изначально в нем же равна 1.
for i = 0 to n - 1
prob = 0
if absorbing[i]
for j = 0 to nonabs - 1
prob += G[j][position[i]]
prob++
prob /= n
println(prob)
Литература
- Википедия - Цепи Маркова
- Кемени Дж., Снелл Дж. "Конечные цепи Маркова".