Примеры матроидов
Матричный матроид
| Определение: | 
| Пусть - векторное пространство над телом , пусть набор векторов из пространства является носителем . Элементами независимого множества данного матроида являются множества линейно-независимых векторов из набора . Тогда , называется матричным матроидом (vector matroid) | 
| Лемма: | 
| Матричный матроид является матроидом. | 
| Доказательство: | 
| Проверим выполнение аксиом независимости: 1) Множество в котором нет векторов является линейно-независимым. 2) Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. 3)Пусть не так. Тогда множество векторов - линейно зависимо. Значит оно образует базис в пространстве векторов "натянутом" на множество векторов . Но тогда , так как мощность базиса больше мощности любого линейно-независимого множества, а - линейно-независимо. Противоречие с условием. По условию . | 
Графовый матроид
| Определение: | 
| Пусть - неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом (graphic matroid). | 
| Лемма: | 
| Графовый матроид является матроидом. | 
| Доказательство: | 
| Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в . 2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в вследствие своей ацикличности. 3) В графе как минимум две компоненты связанности, иначе являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью.Допустим в не существует ребра, соединяющего две различные компоненты связанности из , значит любая компонента связанности из целиком вершинно-входит в какую-либо компоненту из . Рассмотрим любую компоненту связанности Q из , у неё вершин и рёбер. Теперь рассмотрим все компоненты связанности из вершинно-входящие в , пусть их штук, тогда суммарное кол-во рёбер из равно что не превосходит (кол-во рёбер в ). Просуммируем неравенство по всем компонентам связанности из и получим что противоречит условию. Значит предположение не верно и в существует искомое ребро из разных компонент связанности . | 
Трансверсальный матроид
| Определение: | 
| Пусть - двудольный граф. Тогда паросочетание называют трансверсальным матроидом (transversal matroid). | 
| Лемма: | 
| Трансверсальный матроид является матроидом. | 
| Доказательство: | 
| Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, которое обозначим за . И будет выполняться условие , что значит, . 3)Раскрасим ребра из паросочетания, соответствующего в синий цвет, а соответствующего — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится ребер синего цвета, ребер красного цвета, и будет выполняться соотношение . Рассмотрим подграф , индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь . Поменяем в синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид , где . Что значит, что . | 
Универсальный матроид
| Определение: | 
| Универсальным матроидом (uniform matroid) называют объект | 
| Лемма: | 
| Универсальный матроид является матроидом. | 
| Доказательство: | 
| Проверим выполнение аксиом независимости: 1) 
 2) 
 3) Так как и числа в каждом множестве различны, найдётся такое число , которое не будет принадлежать меньшему по мощности множеству .Рассмотрим . | 
