Задача о наибольшей возрастающей подпоследовательности
| Определение: |
| Наибольшая возрастающая подпоследовательность (НВП) (англ. Longest increasing subsequence - LIS) строки длины - это последовательность символов строки таких, что и - наибольшее из возможных. |
Задача заключается в том, чтобы отыскать это наибольшее и саму подпоследовательность. Известно несколько алгоритмов решения этой задачи.
Пример алгоритма, работающего за время
Строим таблицу - длина наибольшей возрастающей подпоследовательности, оканчивающейся точно в позиции . Если мы построим эту таблицу, то ответ к задаче - наибольшее число из этой таблицы.
Само построение тоже элементарно: ,,для всех , для которых . База динамики .
Если мы хотим восстановить саму подпоследовательность, то заведем массив предыдущих величин pred такой, что pred[i] - предпоследний элемент в НВП, оканчивающейся в элементе с номером . Его значение будет изменяться вместе с изменением соответствующего i-ого элемента матрицы .
lis = 0 // длина НВП
a = {0..0} // заполняем нулями
pred = {-1..-1} // -1 - признак отсутствия предпоследнего элемента, что указывает на то, что данный элемент является первым в подпоследовательности
a[1] = 1
For i = 2 to n
For j = 1 to i - 1
If (x[i] > x[j]) and (a[j] + 1 > a[i]) // нашли более оптимальную подпоследовательность
a[i] = a[j]+1
pred[i] = j
lis = max(lis, a[i])
Для вывода самой подпоследовательности достаточной пройти по массиву pred, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента.
Пример алгоритма, работающего за время
Для строки x будем по-прежнему хранить массивы и длины n. Только теперь , среди всех , где , если мы на шаге . pred[i] хранит индекс предшествующего символа для наибольшей возрастающей подпоследовательности, оканчивающейся в i-й позиции. Заметим, что . Пусть мы находимся на i-ом шаге, тогда нам надо найти такой номер k (если положить при начальной реализации, то такое k всегда найдется), причем надо наибольшее k из возможных. После этого полагаем . В силу упорядоченности массива a, мы можем выполнить поиск k бинарным поиском, а име нно, функцией upper_bound(begin, end, val), максимальный возвращающий номер элемента, который меньше (или не больше, зависит от постановки задачи), чем val.
lis = index = 0
a[1] = -inf
a[2..n] = inf
for i = 1 to n
j = upper_bound(бинарный поиск наибольшего индекса j ≤ L, удовлетворяющего x[a[j]] < x[i]
P[i] = M[j]
if j == L or X[i] < X[M[j+1]] // нашли более оптимальную подпоследовательность
M[j+1] = i
L = max{L, j+1}