Участник:Dominica
Версия от 03:42, 4 мая 2016; Dominica (обсуждение | вклад)
Задача: |
|
Решение за
Эта задача может быть решена сведением к решению задачи о назначениях. А именно, покажем, что решение задачи состоит сопоставлении различным заданиям различных времен начала выполнения работы. Если сопоставляем работе время , то вклад в целевую функцию будет . Далее будет показано, что при построении оптимального расписания нам нужно будет рассмотреть всего различных времен начала работ. Следовательно, подобная задача может быть решена за .
Поскольку
— монотонно неубывающие функции, то это значит, что в оптимальном расписании работы должны начинать исполняться как можно раньше. Первые самых ранних для начала исполнения времен могут быть вычислены следующим алгоритмом, в котором мы предполагаем, что все работы отсортированы по неубыванию времени появления := for =
Лемма: |
Существует оптимальное расписание в котором все задач распределены по всем временам , которые выбирает приведенный выше алгоритм. |
Доказательство: |
Предположим, что в некоторое оптимальное расписание Из того, как в алгоритме выбирались значения для входят времена где и из всех возможных оптимальных расписаний мы возьмем то, у которого будет максимально. следует, что — минимальное возможное время, большее , в которое можно начать выполнять какое-нибудь из оставшихся заданий. Если во время в расписании не выполняется никакого задания, то какое-то задание, которое могло бы выполнится в момент времени выполняется в позднее. Значит оно может быть перемещено в нашем расписании на время без увеличения целевой функции. Таким образом, наше новое расписание тоже будет оптимальным. Получили противоречие с максимальностью . Значит из всех оптимальных расписаний нам подходят только те, в которых . |
Заметим, что в полученном расписании будут интервалы в которые машина будет работать без остановки, и будут периоды простоя.
Для того, чтобы найти это оптимальное расписание, сведем к задаче о назначения следующим образом: