Комбинаторные объекты
Определение: |
Комбинаторные объекты (англ. combinatorial objects) — конечные множества, на элементы которых могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п. |
Определение: |
Если два комбинаторных объекта, различающихся только порядком элементов, считаются различными, то они называются упорядоченными (англ. ordered). |
Содержание
Примеры комбинаторных объектов
Битовые вектора
Определение: |
Битовые вектора (англ. bit vectors) — последовательность нулей и единиц заданной длины. |
Перестановки
Определение: |
Перестановки[1] (англ. permutations) — упорядоченный набор чисел , обычно трактуемый как биекция на множестве , которая числу ставит соответствие -й элемент из набора. |
Примером перестановки может служить задача о рассадке
человек за стол по местам.Перестановки с повторениями
Определение: |
Перестановки с повторениями (англ. permutations with repetitions) — те же перестановки, однако некоторые элементы могут встречаться несколько раз. |
В пример можно привести следующую задачу: имеется набор книг
, каждая из которых имеется в экземплярах соответственно. Сколько существует способов переставить книги на полке?Размещения
Определение: |
Размещение[2] (англ. arrangement) из по — упорядоченный набор из различных элементов некоторого -элементного множества. |
Примером размещения может служить задача о рассадке
человек за стол по местам, где .Размещения с повторениями
Определение: |
Размещение с повторениями (англ. arrangement with repetitions), составленное из данных | элементов по — отображение множества первых натуральных чисел в данное множество .
В пример можно привести следующую задачу: имеется
книг, каждая в экземплярах. Сколькими способами может быть сделан выбор книг из числа данных?Сочетания
Определение: |
Сочетания[3] (англ. combinations) из по — набор элементов, выбранных из данных элементов. |
Примером сочетания может служить задача о выборе
книг из вариантов.Сочетания с повторениями
Определение: |
Сочетания с повторениями (англ. combinations with repetitions) — те же сочетания, только теперь даны | типов элементов, из которых нужно выбрать элементов, причем элементов каждого типа неограниченное количество, и элементы одного типа должны стоять подряд друг за другом.
В пример можно привести следующую задачу: имеется
пирожных. Сколько способов купить пирожных?Разбиение на неупорядоченные слагаемые
Определение: |
Разбиение числа на неупорядоченные слагаемые (англ. partition) — представление числа в виде суммы слагаемых. |
Разбиение на подмножества
Определение: |
Разбиение множества (англ. partition of a set) — семейство непустых множеств на подмножества , где — некоторое множество индексов, если:
|
Число комбинаторных объектов
Тип объекта | Число объектов |
Битовые вектора | |
Перестановки | |
Перестановки с повторениями | |
Размещения | |
Размещения с повторениями | |
Сочетания | |
Сочетания с повторениями | |
Разбиение на неупорядоченные слагаемые | Нахождение количества разбиений числа на слагаемые |
Разбиение на подмножества | Числа Стирлинга второго порядка |
См. также
- Генерация комбинаторных объектов в лексикографическом порядке
- Получение следующего объекта
- Получение номера по объекту
- Получение объекта по номеру