Задача о наибольшей общей подпоследовательности
Определение: |
Последовательность | является подпоследовательностью (англ. subsequence) последовательности , если существует строго возрастающая последовательность индексов таких, что для всех выполняется соотношение .
Другими словами, подпоследовательность данной последовательности — это последовательность, из которой удалили ноль или больше элементов. Например,
является подпоследовательностью последовательности , а соответствующая последовательность индексов имеет вид .Определение: |
Последовательность | является общей подпоследовательностью (англ. common subsequence) последовательностей и , если является подпоследовательностью как , так и .
Задача: |
Пусть имеются последовательности | и . Необходимо найти
Содержание
Наивное решение
Переберем все различные подпоследовательности обеих строк и сравним их. Тогда искомая
гарантированно найдётся, однако время работы алгоритма будет экспоненциально зависеть от длины исходных последовательностей.Динамическое программирование
Для решения данной задачи используем Принцип оптимальности на префиксе.
Доказательство оптимальности
Теорема: |
Пусть имеются последовательности и , а — их .
|
Доказательство: |
|
Решение
Обозначим как
префиксов данных последовательностей, заканчивающихся в элементах с номерами и соответственно. Получается следующее рекуррентное соотношение:
Очевидно, что сложность алгоритма составит
, где и — длины последовательностей.Построение подпоследовательности
Для каждой пары элементов помимо длины
соответствующих префиксов хранятся и номера последних элементов, участвующих в этой .Таким образом, посчитав ответ, можно восстановить всю наибольшую общую подпоследовательность.Псевдокод
, — данные последовательности; — для префикса длины последовательности и префикса длины последовательности ; — пара индексов элемента таблицы, соответствующего оптимальному решению вспомогательной задачи, выбранной при вычислении .
// подсчёт таблиц int LCS(x: int, y: int): m = length(x) n = length(y) for i = 1 to m lcs[i][0] = 0 for j = 0 to n lcs[0][j] = 0 for i = 1 to m for j = 1 to n if x[i] == y[j] lcs[i][j] = lcs[i - 1][j - 1] + 1 prev[i][j] = pair(i - 1, j - 1) else if lcs[i - 1][j] >= lcs[i][j - 1] lcs[i][j] = lcs[i - 1][j] prev[i][j] = pair(i - 1, j) else lcs[i][j] = lcs[i][j - 1] prev[i][j] = pair(i, j - 1) // вывод LCS, вызывается как printLCS(m, n) int printLCS(i: int, j: int): if i == 0 or j == 0 // пришли к началу LCS return if prev[i][j] == pair(i - 1, j - 1) // если пришли в lcs[i][j] из lcs[i - 1][j - 1], то x[i] == y[j], надо вывести этот элемент printLCS(i - 1, j - 1) print x[i] else if prev[i][j] == pair(i - 1, j) printLCS(i - 1, j) else printLCS(i, j - 1)
Оптимизация для вычисления только длины
Заметим, что для вычисления
нужны только -ая и -ая строчки матрицы . Тогда можно использовать лишь элементов таблицы:int LCS2(x: int, y: int): if length(x) < length(y) // в таблице будет length(y) столбцов, и если length(x) меньше, выгоднее поменять местами x и y swap(x, y) m = length(x) n = length(y) for j = 0 to n lcs[0][j] = 0 lcs[1][j] = 0 for i = 1 to m lcs[1][0] = 0 for j = 1 to n lcs[0][j] = lcs[1][j] // элемент, который был в a[1][j], теперь в предыдущей строчке if x[i] == y[j] lcs[1][j] = lcs[0][j - 1] + 1 else if lcs[0][j] >= lcs[1][j - 1] lcs[1][j] = lcs[0][j] else lcs[1][j] = lcs[1][j - 1] // ответ — lcs[1][n]
Также можно заметить, что от
-ой строчки нужны только элементы с -го столбца. В этом случае можно использовать лишь элементов таблицы:int LCS3(x: int, y: int): if length(x) < length(y) // в таблице будет length(y) столбцов, и если length(x) меньше, выгоднее поменять местами x и y swap(x, y) m = length(x) n = length(y) for j = 0 to n lcs[j] = 0 d = 0 // d — дополнительная переменная, в ней хранится lcs[i - 1][j - 1] // в lcs[j], lcs[j + 1], …, lcs[n] хранятся lcs[i - 1][j], lcs[i - 1][j + 1], …, lcs[i - 1][n] // в lcs[0], lcs[1], …, lcs[j - 1] хранятся lcs[i][0], lcs[i][1], …, lcs[i][j - 1] for i = 1 to m for j = 1 to n tmp = lcs[j] if x[i] == y[j] lcs[j] = d + 1 else if lcs[j] >= lcs[j - 1] lcs[j] = lcs[j] // в lcs[j] и так хранится lcs[i - 1][j] else lcs[j] = lcs[j - 1] d = tmp // ответ — lcs[n]
Длина кратчайшей общей суперпоследовательности
Для двух подпоследовательностей [1]
и длина кратчайшей общей суперпоследовательности равнаРешение для случая k строк
Найдем решение для 3 строк.
Задача: |
Пусть имеются последовательности | , и . Необходимо найти
Наивное решение подсчёта
нескольких строк при помощи последовательного нахождения двух строк и уменьшением набора строк на единицу, не срабатывает. Это доказывается следующим контрпримером. Даны три последовательности:
Подсчитаем
Это неверно, так как
Теорема: |
Пусть имеются последовательности , и , а — их .
|
Доказательство: |
Доказательство аналогично доказательству для двух последовательностей. |
Решение
Обозначим как
наибольшую общую подпоследовательность префиксов данных последовательностей, заканчивающихся в элементах с номерами , и соответственно. Получается следующее рекуррентное соотношение:
Очевидно, что сложность алгоритма составит
, где , и — длины последовательностей.Аналогичным образом задача решается для
строк. Заполняется -мерная динамика.Алгоритм Хиршберга
Задача: |
Пусть имеются последовательности | и . Необходимо найти за время и памяти.
Алгоритм
Не теряя общности, будем считать, что
. Тогда разобьем последовательность на две равные части и . Найдем для и всех префиксов последовательности , аналогично - для развернутых последовательностей и . Стоит отметить, что для нахождения на всех префиксах достаточно одного квадратичного прохода, так как -ый элемент последней строки результирующей матрицы есть не что иное, как первой последовательности и префикса второй длины . Затем выберем такой индекс , что . Запустим алгоритм рекурсивно для пар и . Будем продолжать до тех пор, пока в не останется ровно 1 элемент, тогда достаточно проверить, входит ли он текущую часть , если входит, то добавим этот символ в ответ, если нет - вернем пустую строку. Таким образом, в результате работы алгоритма соберем последовательность, которая будет являться искомой.Псевдокод
В данном примере
- последовательности, - вектор ответа. - функция, возвращающая последнюю строку матрицы , для определения ответа на всех префиксах. Важно отметить, что для ее вычисления необходимо и достаточно хранить лишь две соседние строки матрицы в любой момент времени. Так как вопрос оптимальности используемой памяти является важным местом данного алгоритма, то передачу различных отрезков последовательностей стоит воспринимать, как скрытую передачу границ для хранящихся глобально данных.void hirschberg(x: vector, y: vector): if x.size() == 1 if y.contains(x[0]) ans.push(x[0]) // сохранение очередного элемента lcs return mid = x.size() / 2 f[] = LCS(x[0 .. mid], y) s[] = LCS(reverse(x[mid + 1 .. x.size()]), reverse(y)) // s[i] хранит lcs для второй половины x и суффикса y[i..y.size()] // это позволяет использовать общий индекс в качестве точки разделения max = s[0] it_max = 0 for j = 0 to y.size() if f[j] + s[j + 1] > max max = f[j] + s[j + 1] it_max = j if f[y.size() - 1] > max it_max = y.size() - 1 delete[] f delete[] s // промежуточные массивы необходимо удалять или хранить глобально hirschberg(x[0 .. mid], y[0 .. it_max]) hirschberg(x[mid + 1 .. x.size()], y[it_max .. y.size()])
См. также
- Задача о наибольшей возрастающей подпоследовательности
- Наибольшая общая возрастающая подпоследовательность
- Задача о наибольшей общей палиндромной подпоследовательности
Примечания
Список литературы
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 459. — ISBN 5-8489-0857-4