Суперпозиции
Определение: |
Суперпозиция (сложная функция) — это функция, полученная из некоторого множества функций путем подстановки одной функции в другую или отождествления переменных. |
Множество всех возможных не эквивалентных друг другу суперпозиций данного множества функций образует замыкание данного множества функций.
Способы получения суперпозиций
Рассмотрим две булевы функции:
функцию от аргументов и
функцию от аргументов .
Тогда мы можем получить новую функцию из имеющихся двумя способами:
- Подстановкой одной функции в качестве некоторого аргумента для другой;
- Отождествлением аргументов функций.
Подстановка одной функции в другую
Определение: |
Подстановкой функции | в функцию называется замена i-того аргумента функции значением функции :
Допускается также не только подстановка одной функции в другую, но и подстановка функции в саму себя.
При подстановке функции g вместо i-того аргумента функции f, результирующая функция h будет принимать аргументы, которые можно разделить на следующие блоки:
1. | – аргументы функции | до вставленной функции
2. | – используются как аргументы для вставленной функции |
3. | – аргументы функции | после вставленной функции
Пример:
— первая исходная функция
— вторая исходная функция
— подстановка функции вместо второго аргумента функции
В данном примере при помощи подстановки мы получили функцию .
Отождествление переменных
Определение: |
Отождествлением переменных называется подстановка i-того аргумента функции | вместо j-того аргумента:
Пример:
— исходная функция
— функция с отождествленными первым и вторым аргументами
Очевидно, в данном примере мы получили функцию — проектор единственного аргумента.
Ранги суперпозиций
Суперпозиция имеет ранг
Например, — множество суперпозиций, полученных из исходного множества за одну подстановку или отождествление, — множество суперпозиций, полученных из множества за одну подстановку или отождествление и т.д.